We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The emphasis on team science in clinical and translational research increases the importance of collaborative biostatisticians (CBs) in healthcare. Adequate training and development of CBs ensure appropriate conduct of robust and meaningful research and, therefore, should be considered as a high-priority focus for biostatistics groups. Comprehensive training enhances clinical and translational research by facilitating more productive and efficient collaborations. While many graduate programs in Biostatistics and Epidemiology include training in research collaboration, it is often limited in scope and duration. Therefore, additional training is often required once a CB is hired into a full-time position. This article presents a comprehensive CB training strategy that can be adapted to any collaborative biostatistics group. This strategy follows a roadmap of the biostatistics collaboration process, which is also presented. A TIE approach (Teach the necessary skills, monitor the Implementation of these skills, and Evaluate the proficiency of these skills) was developed to support the adoption of key principles. The training strategy also incorporates a “train the trainer” approach to enable CBs who have successfully completed training to train new staff or faculty.
Scope of the problem
Hypertension (HTN) affects more than 20% of the adult and 3% of the pediatric populations. It is a disease process that contributes to the development of cardiovascular and renal diseases. It appears to be a polygenic, multifactorial disorder with several genes interacting with environmental factors. It is defined by a systolic blood pressure (SBP) greater than 140, diastolic blood pressure (DBP) greater than 90, or someone requiring antihypertensive medications for control of sustained elevations of blood pressure (BP).
As a disease process, HTN was born out of epidemiological studies that showed chronic BP elevation decreased life expectancy; that treatment of HTN reduces stroke, coronary artery disease (CAD), and heart failure; and that most hypertensive patients require more than one agent to achieve BP control.
HTN is an asymptomatic disease process. The exception is a hypertensive emergency. Hypertensive emergencies and urgencies, also known as hypertensive crises, can cause end-organ dysfunction and require controlled management. These hypertensive crises can be viewed as a continuum of the disease process in some patients.
A hypertensive emergency, also known as malignant HTN, is defined as an acute elevation in BP (DBP >130 mmHg in general) with end-organ dysfunction or damage. It requires prompt parenteral treatment with a goal of 25% reduction in mean arterial pressure (MAP) within 30–60 minutes.
A hypertensive urgency is defined as moderately severe to severe HTN with DBP 120–140 mmHg without presenting signs or symptoms of malignant HTN or a concomitant emergency medical condition.
It is well documented that buried layers in quantum dot (QD) superlattices influence the position of quantum dots in the subsequently grown layers through strain field interactions (e.g.1,2, 3,4). Using the Focused Ion Beam (FIB) tomographic technique we have reconstructed the 3D relationship of successive layers of coherent Ge QDs separated by epitaxial Si capping layers - a “QD superlattice”.
Techniques such as Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) can only look at a single surface layer of QDs or, in the case of Transmission Electron Microscopy (TEM), look at a two-dimensional projection of a three-dimensional volume so that 3D relationships need to be inferred. Since the strain interactions are complex, an enhanced fundamental understanding of these self-organization mechanisms can more directly be obtained from full 3D reconstructions of these structures.
By capping with Si at 300°C we were able to grow QD superlattices with QDs tens of nanometers in height. This places them within the resolution of the FIB tomographic technique to reconstruct. Using the FIB we performed in-situ serial sectioning of the QD superlattice and then reconstructed the QD superlattice. The reconstruction was then analyzed to investigate the ordering of the QDs.
Results from a reconstruction of a superlattice matrix will be presented with analysis of the self-ordering of the QDs. Observations of a novel self-limiting (in height) morphology, the quantum mesa, associated with the capping technique used will also be discussed.
Email your librarian or administrator to recommend adding this to your organisation's collection.