We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.
OBJECTIVES/GOALS: To develop feasible screening methods for activity of the enzyme Glucose-6-phosphate dehydrogenase (G6PD) with point of care applicability. METHODS/STUDY POPULATION: Current knowledge establishes the relevance of G6PD as a critical therapeutic determinant for effective antimalarial therapy due to the occurrence of mutations that lead to post-treatment severe adverse effects. We present our findings on development of cost effective point-of-care screening methodologies to ascertain G6PD deficiency. RESULTS/ANTICIPATED RESULTS: Using Patient Cohort Explorer and data from the Department of Pathology, we established the prevalence of G6PD deficiency at the University of Mississippi Medical Center, Jackson, MS as high as 11.8% (African-American males in all population, n = 2518). Next, for selection of potential target groups, we set up a protocol for recruitment of volunteers based on ethnic background, parental ethnicity, and medical history. G6PD activity was evaluated using point of care methods [Trinity Biotech test or CareSTART Biosensor], and Gold Standard quantitative spectrophotometric assay (LabCorp). Determinations in >20 subjects have showed comparable concordance. If used with a conservative interpretation of the signal, the Trinity Biotech test showed superior potential for use in the field relative to the CareSTART Biosensor. DISCUSSION/SIGNIFICANCE OF IMPACT: We established the prevalence of G6PD deficiency in our medical center. We have also setup tests for point-of-care assessment of G6PD. Pending evaluation of the relative tests performance, we will be in position to screen individuals and select them for a prospective clinical trial to evaluate the safety of antimalarial agents on scope of G6PD deficiency.
The rocky shores of the north-east Atlantic have been long studied. Our focus is from Gibraltar to Norway plus the Azores and Iceland. Phylogeographic processes shape biogeographic patterns of biodiversity. Long-term and broadscale studies have shown the responses of biota to past climate fluctuations and more recent anthropogenic climate change. Inter- and intra-specific species interactions along sharp local environmental gradients shape distributions and community structure and hence ecosystem functioning. Shifts in domination by fucoids in shelter to barnacles/mussels in exposure are mediated by grazing by patellid limpets. Further south fucoids become increasingly rare, with species disappearing or restricted to estuarine refuges, caused by greater desiccation and grazing pressure. Mesoscale processes influence bottom-up nutrient forcing and larval supply, hence affecting species abundance and distribution, and can be proximate factors setting range edges (e.g., the English Channel, the Iberian Peninsula). Impacts of invasive non-native species are reviewed. Knowledge gaps such as the work on rockpools and host–parasite dynamics are also outlined.
The traditional living donor was very healthy. However, as the supply-demand gap continues to expand, transplant programs have become more accepting of less healthy donors. This paper focuses on the other extreme, asking whether and when individuals who have life-limiting conditions (LLC) should be considered for living organ donation. We discuss ethical issues raised by 1) donation by individuals with progressive severe debilitating disease for whom there is no ameliorative therapy; and 2) donation by individuals who are imminently dying or would die by the donation process itself.
Although national guidelines exist for evaluating the eligibility of potential living donors and for procuring their informed consent, no special protections or considerations exist for potential living donors who are incarcerated. Human research subject protections in the United States are codified in the Federal Regulations, 45 CFR 46, and special protections are given to prisoners. Living donor transplantation has parallels with human subject research in that both activities are performed with the primary goal of benefiting third parties. In this article, we describe what special considerations should be provided to prisoners as potential living donors using a vulnerabilities approach adapted from the human research subject protection literature.
Dermaptera (earwigs) are described from the Triassic of Australia and England, and from the Jurassic and Cretaceous of England. Phanerogramma heeri (Giebel) is transferred from Coleoptera and it and Brevicula gradus Whalley are re-described. Seven new taxa are named based on tegmina: Phanerogramma australis sp. nov. and P. dunstani sp. nov. from the Late Triassic of Australia; P. gouldsbroughi sp. nov. from the Triassic/Jurassic of England; Brevicula maculata sp. nov. and Trivenapteron moorei gen. et sp. nov. from the Early Jurassic of England; and Dimapteron corami gen et sp. nov. and Valdopteron woodi gen. et sp. nov. from the Early Cretaceous of England. Phanerogramma, Dimapteron and Valdopteron are tentatively placed in the family Dermapteridae, and Trivenapteron is incertae sedis. Most of the specimens of Phanerogramma heeri are from the Brodie Collection and labelled ‘Lower Lias'; however, some were collected from the underlying Penarth Group, thus this species spans the Triassic/Jurassic boundary. The palaeobiogeography of the Late Triassic and Early Jurassic of England is discussed.
In Romans 13:5, St. Paul famously announced that Christians must obey law not only for fear of punishment, but also “for conscience sake.” Early modern Protestants and Catholics agreed that violations of laws that bound conscience, if unrepented, threatened damnation. But not all law obligated conscience. Natural law typically did. So did Jesus's injunctions and God's moral law revealed in the Old Testament, but not His judicial law governing civic affairs or His ceremonial law regulating Jewish religious observance. Human laws about things indifferent, matters neither commanded nor forbidden in scripture and nature, presented the most complicated case. Disobedience to only certain classes of human laws—but not all—imperiled the soul. Catholics and Protestants fiercely debated how to distinguish rulers’ ordinances that bound conscience from those that did not. This article explores the principles that animated the dispute and the methods used for linking human law to the fate of the soul or challenging that connection.
Using USDA's Agricultural Resource Management Survey data, factors leading to the adoption of technology, management practices, and production systems by U.S. beef cow-calf producers are analyzed. Binary logit regression models are used to determine impacts of vertical integration; region of the U.S.; farm size, diversification, and tenure; and demographics on adoption decisions. Significant differences were found in adoption rates by region of the U.S., degree of vertical integration, and size of operation, suggesting the presence of economies of size and vertical economies of scope. Results also indicate high degrees of complementarity among technologies, management practices, and production systems.
A consensus conference on the reasons for the undertreatment of depression was organized by the National Depressive and Manic Depressive Association (NDMDA) on January 17–18,1996. The target audience included health policymakers, clinicians, patients and their families, and the public at large. Six key questions were addressed: (1) Is depression undertreated in the community and in the clinic? (2) What is the economic cost to society of depression? (3) What have been the efforts in the past to redress undertreatment and how successful have they been? (4) What are the reasons for the gap between our knowledge of the diagnosis and treatment of depression and actual treatment received in this country? (5) What can we do to narrow this gap? (6) What can we do immediately to narrow this gap?
Pain, spasticity, tremor, spasms, poor sleep quality, and bladder and bowel dysfunction, among other symptoms, contribute significantly to the disability and impaired quality of life of many patients with multiple sclerosis (MS). Motor symptoms referable to the basal ganglia, especially paroxysmal dystonia, occur rarely and contribute to the experience of distress. A substantial percentage of patients with MS report subjective benefit from what is often illicit abuse of extracts of the Cannabis sativa plant; the main cannabinoids include delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol. Clinical trials of cannabis plant extracts and synthetic Δ9-THC provide support for therapeutic benefit on at least some patient self-report measures. An illustrative case is presented of a 52-year-old woman with MS, paroxysmal dystonia, complex vocal tics, and marijuana dependence. The patient was started on an empirical trial of dronabinol, an encapsulated form of synthetic Δ9-THC that is usually prescribed as an adjunctive medication for patients undergoing cancer chemotherapy. The patient reported a dramatic reduction of craving and illicit use; she did not experience the “high” on the prescribed medication. She also reported an improvement in the quality of her sleep with diminished awakenings during the night, decreased vocalizations, and the tension associated with their emission, decreased anxiety and a decreased frequency of paroxysmal dystonia.
We revisit the problem of why stars become red giants. We modify the physics of a standard stellar evolution code in order to determine what does and what does not contribute to a star becoming a red giant. In particular, we have run tests to try to separate the effects of changes in the mean molecular weight and in the energy generation. The implications for why stars become red giants are discussed. We find that while a change in the mean molecular weight is necessary (but not sufficient) for a 1-M⊙ star to become a red giant, this is not the case in a star of 5 M⊙. It therefore seems that there may be more than one way to make a giant.