We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Sleep quantity and quality are associated with executive function (EF) in experimental studies, and in individuals with sleep disorders. With advancing age, sleep quantity and quality decline, as does the ability to perform EF tasks, suggesting that sleep disruption may contribute to age-related EF declines. This cross-sectional cohort study tested the hypothesis that poorer sleep quality (i.e., the frequency and duration of awakenings) and/or quantity may partly account for age-related EF deficits.
Community-dwelling older adults (N = 184) completed actigraphic sleep monitoring then a range of EF tasks. Two EF factors were extracted using exploratory structural equation modeling. Sleep variables did not mediate the relationship between age and EF factors. Post hoc moderated mediation analyses were conducted to test whether cognitive reserve compensates for sleep-related EF deficits, using years of education as a proxy measure of cognitive reserve.
We found a significant interaction between cognitive reserve and the number and frequency of awakenings, explaining a small (approximately 3%), but significant amount of variance in EF. Specifically, in individuals with fewer than 11 years of education, greater sleep disturbance was associated with poorer EF, but sleep did not impact EF in those with more education. There was no association between age and sleep quantity.
This study highlights the role of cognitive reserve in the sleep–EF relationship, suggesting individuals with greater cognitive reserve may be able to counter the impact of disturbed sleep on EF. Therefore, improving sleep may confer some protection against EF deficits in vulnerable older adults.
Email your librarian or administrator to recommend adding this to your organisation's collection.