We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The science of studying diamond inclusions for understanding Earth history has developed significantly over the past decades, with new instrumentation and techniques applied to diamond sample archives revealing the stories contained within diamond inclusions. This chapter reviews what diamonds can tell us about the deep carbon cycle over the course of Earth’s history. It reviews how the geochemistry of diamonds and their inclusions inform us about the deep carbon cycle, the origin of the diamonds in Earth’s mantle, and the evolution of diamonds through time.
A Tits polygon is a bipartite graph in which the neighborhood of every vertex is endowed with an “opposition relation” satisfying certain properties. Moufang polygons are precisely the Tits polygons in which these opposition relations are all trivial. There is a standard construction that produces a Tits polygon whose opposition relations are not all trivial from an arbitrary pair $(\unicode[STIX]{x1D6E5},T)$, where $\unicode[STIX]{x1D6E5}$ is a building of type $\unicode[STIX]{x1D6F1}$, $\unicode[STIX]{x1D6F1}$ is a spherical, irreducible Coxeter diagram of rank at least $3$, and $T$ is a Tits index of absolute type $\unicode[STIX]{x1D6F1}$ and relative rank $2$. A Tits polygon is called $k$-plump if its opposition relations satisfy a mild condition that is satisfied by all Tits triangles coming from a pair $(\unicode[STIX]{x1D6E5},T)$ such that every panel of $\unicode[STIX]{x1D6E5}$ has at least $k+1$ chambers. We show that a $5$-plump Tits triangle is parametrized and uniquely determined by a ring $R$ that is alternative and of stable rank $2$. We use the connection between Tits triangles and the theory of Veldkamp planes as developed by Veldkamp and Faulkner to show existence.
We give a short proof of the uniqueness of finite spherical buildings of rank at least 3 in terms of the structure of the rank 2 residues and use this result to prove a result making it possible to identify an arbitrary finite group of Lie type from knowledge of its “parabolic structure” alone. Our proof also involves a connection between loops, “Latin chamber systems” and buildings.