We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a cubical type theory based on the Cartesian cube category (faces, degeneracies, symmetries, diagonals, but no connections or reversal) with univalent universes, each containing Π, Σ, path, identity, natural number, boolean, suspension, and glue (equivalence extension) types. The type theory includes a syntactic description of a uniform Kan operation, along with judgmental equality rules defining the Kan operation on each type. The Kan operation uses both a different set of generating trivial cofibrations and a different set of generating cofibrations than the Cohen, Coquand, Huber, and Mörtberg (CCHM) model. Next, we describe a constructive model of this type theory in Cartesian cubical sets. We give a mechanized proof, using Agda as the internal language of cubical sets in the style introduced by Orton and Pitts, that glue, Π, Σ, path, identity, boolean, natural number, suspension types, and the universe itself are Kan in this model, and that the universe is univalent. An advantage of this formal approach is that our construction can also be interpreted in a range of other models, including cubical sets on the connections cube category and the De Morgan cube category, as used in the CCHM model, and bicubical sets, as used in directed type theory.
We present a detailed overview of the cosmological surveys that we aim to carry out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5 000 deg2; a wide and deep continuum galaxy and HI intensity mapping (IM) survey over 20 000 deg2 from
$z = 0.35$
to 3; and a deep, high-redshift HI IM survey over 100 deg2 from
$z = 3$
to 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to
$z \sim 3$
with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to
$z = 6$
. These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical and near-infrared (NIR) surveys like Euclid, LSST, and WFIRST leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1.
Background: Spinal muscular atrophy (SMA) is a children’s neuromuscular disorder. Although motor neuron loss is a major feature of the disease, we have identified fatty acid abnormalities in SMA patients and in preclinical animal models, suggesting metabolic perturbation is also an important component of SMA. Methods: Biochemical, histological, proteomic, and high resolution respirometry were used. Results: SMA patients are more susceptible to dyslipidemia than the average population as determined by a standard lipid profile in a cohort of 72 pediatric patients. As well, we observed a non-alcoholic liver disease phenotype in apreclinical mouse model. Denervation alone was not sufficient to induce liver steatosis, as a mouse model of ALS, did not develop fatty liver. Hyperglucagonemia in Smn2B/-mice could explain the hepatic steatosis by increasing plasma substrate availability via glycogen depletion and peripheral lipolysis. Proteomic analysis identified mitochondrion and lipid metabolism as major clusters. Alterations in mitochondrial function were revealed by high-resolution respirometry. Finally, low-fat diets led to increased survival in Smn2B/-mice. Conclusions: These results provide strong evidence for lipid metabolism defects in SMA. Further investigation will be required to establish the primary mechanism of these alterations and understand how they lead to additional co-morbidities in SMA patients.
Lebanon has a need for innovative approaches to increase access to mental health care to meet the country's current high demand. E-mental health has been included in its national mental health strategy while in parallel the World Health Organization has produced an online intervention called ‘Step-by-Step’ to treat symptoms of depression that is being tested in Lebanon over the coming years.
Aim.
The primary aim of this study is to conduct bottom-up, community-driven qualitative cognitive interviewing from a multi-stakeholder perspective to inform the cultural adaptation of an Internet-delivered mental health intervention based on behavioural activation in Lebanon.
Methods.
National Mental Health Programme staff conducted a total of 11 key informant interviews with three mental health professionals, six front-line workers in primary health care centres (PHCCs) and two community members. Also, eight focus group discussions, one with seven front-line workers and seven others with a total of 66 community members (Lebanese, Syrians and Palestinians) were conducted in several PHCCs to inform the adaptation of Step-by-Step. Results were transcribed and analysed thematically by the project coordinator and two research assistants.
Results.
Feedback generated from the cognitive interviewing mainly revolved around amending the story, illustrations and the delivery methods to ensure relevance and sensitivity to the local context. The results obtained have informed major edits to the content of Step-by-Step and also to the model of provision. Notably, the intervention was made approximately 30% shorter; it includes additional videos of content alongside the originally proposed comic book-style delivery; there is less emphasis on total inactivity as a symptom of low mood and more focus on enjoyable activities to lift mood; the story and ways to contact participants to provide support were updated in line with local gender norms; and many of the suggested or featured activities have been revised in line with suggestions from community members.
Conclusions.
These findings promote and advocate the use of community-driven adaptation of evidence-based psychological interventions. Some of the phenomena recorded mirror findings from other research about barriers to care seeking in the region and so changes made to the intervention should be useful in improving utility and uptake of ‘Step-by-Step’.
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
The SkyMapper Transient survey (SMT) is exploring variability in the southern sky by performing (a) a rolling search to discover and study supernovæ, and (b) a Target of Opportunity programme that uses the robotic SkyMapper Telescope at Siding Spring Observatory. The supernova survey is obtaining a non-targeted sample of Type Ia supernovæ (SNe Ia) at low redshifts, z < 0.1, and studying other interesting transients found with the search strategy. We have a Target of Opportunity programme with an automatic response mechanism to search for optical counterparts to gravitational-wave and fast radio-burst events; it benefits from SkyMapper’s large field of view of 5.7 sq. deg. and a rapid data reduction pipeline.
We present first results of the SMT survey. The SMT pipeline can process and obtain potential candidates within 12 hours of observation. It disentangles real transients from processing artefacts using a machine-learning algorithm. To date, SMT has discovered over 60 spectroscopically confirmed supernovæ, several peculiar objects, and over 40 SNe Ia including one (SNIa 2016hhd) which was found within the first few days of explosion. We have also participated in searches for optical counterparts of gravitational waves, fast radio bursts and other transients, and have published observations of the optical counterpart of the gravitational-wave event GW170817. We also participate in coordinated observations with the Deeper Wider Faster programme, and the Kepler K2 cosmology project.
The Center for Astrophysical Research in Antarctica conducts various educational outreach programs as part of its mission as a National Science Foundation Science and Technology Center. The method behind the outreach programs is one of forging partnerships between Center researchers and other educational organisations. The main program serves primary and secondary students in Chicago. The core of the program is called Space Explorers and is targeted at high school students. These students attend a summer residential institute at the University of Chicago’s Yerkes Observatory. The high school Space Explorers then extend the reach of the program during the academic year by teaching in primary schools using a portable planetarium. The Center also pursues many other outreach activities and is in the process of forming an Antarctic Education Alliance.
Homotopy type theory is an extension of Martin-Löf type theory, based on a correspondence with homotopy theory and higher category theory. In homotopy type theory, the propositional equality type is proof-relevant, and corresponds to paths in a space. This allows for a new class of datatypes, called higher inductive types, which are specified by constructors not only for points but also for paths. In this paper, we consider a programming application of higher inductive types. Version control systems such as Darcs are based on the notion of patches—syntactic representations of edits to a repository. We show how patch theory can be developed in homotopy type theory. Our formulation separates formal theories of patches from their interpretation as edits to repositories. A patch theory is presented as a higher inductive type. Models of a patch theory are given by maps out of that type, which, being functors, automatically preserve the structure of patches. Several standard tools of homotopy theory come into play, demonstrating the use of these methods in a practical programming context.
The internet has altered how people engage with each other in myriad ways, including offering opportunities for people to act distrustfully. This fascinating set of essays explores the question of trust in computing from technical, socio-philosophical, and design perspectives. Why has the identity of the human user been taken for granted in the design of the internet? What difficulties ensue when it is understood that security systems can never be perfect? What role does trust have in society in general? How is trust to be understood when trying to describe activities as part of a user requirement program? What questions of trust arise in a time when data analytics are meant to offer new insights into user behavior and when users are confronted with different sorts of digital entities? These questions and their answers are of paramount interest to computer scientists, sociologists, philosophers and designers confronting the problem of trust.