We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A new system for preparing 14C samples was established for a compact accelerator mass spectrometer (GXNU-AMS) at Guangxi Normal University. This sample preparation system consists of three units: a vacuum maintenance unit, a CO2 purification unit, and a CO2 reduction unit, all of which were made of quartz glass. A series of radiocarbon (14C) preparation experiments were conducted to verify the reliability of the system. The recovery rate of graphite obtained was more than 80%. The carbon content in the commercial toner and wood sample was linearly fitted to the CO2 pressure in the measurement unit of the system. The results showed a good linear relationship, indicating that the reliability of the sample preparation system. AMS measurements were conducted on a batch of standard, wood, and dead graphite samples prepared using this system. The results showed that the beam current of 12C- for each sample was more than 40 μA, the carbon contamination introduced during the sample preparation process was ∼ 2 × 10–15, and that the new sample preparation system is compact, low-contamination, and efficient and meets the GXNU-AMS requirements for 14C samples.
Many waterflooding oil fields, injecting water into an oil-bearing reservoir for pressure maintenance, are in their middle to late stages of development. To explore the geological conditions and improve oilfield recovery of the most important well group of the Hu 136 block, located on the border areas of three provinces (Henan, Shandong, and Hebei), Zhongyuan Oilfield, Sinopec, central China, a 14C cross-well tracer monitoring technology was developed and applied in monitoring the development status and recognize the heterogeneity of oil reservoirs. The tracer response in the production well was tracked, and the water drive speed, swept volume of the injection fluid were obtained. Finally, the reservoir heterogeneity characteristics, such as the dilution coefficient, porosity, permeability, and average pore-throat radius, were fitted according to the mathematical model of the heterogeneous multi-layer inter-well theory. The 14C-AMS technique developed in this work is expected to be a potential analytical method for evaluating underground reservoir characteristics and providing crucial scientific guidance for the mid to late oil field recovery process.
The incidence of scarlet fever has increased dramatically in recent years in Chongqing, China, but there has no effective method to forecast it. This study aimed to develop a forecasting model of the incidence of scarlet fever using a seasonal autoregressive integrated moving average (SARIMA) model. Monthly scarlet fever data between 2011 and 2019 in Chongqing, China were retrieved from the Notifiable Infectious Disease Surveillance System. From 2011 to 2019, a total of 5073 scarlet fever cases were reported in Chongqing, the male-to-female ratio was 1.44:1, children aged 3–9 years old accounted for 81.86% of the cases, while 42.70 and 42.58% of the reported cases were students and kindergarten children, respectively. The data from 2011 to 2018 were used to fit a SARIMA model and data in 2019 were used to validate the model. The normalised Bayesian information criterion (BIC), the coefficient of determination (R2) and the root mean squared error (RMSE) were used to evaluate the goodness-of-fit of the fitted model. The optimal SARIMA model was identified as (3, 1, 3) (3, 1, 0)12. The RMSE and mean absolute per cent error (MAPE) were used to assess the accuracy of the model. The RMSE and MAPE of the predicted values were 19.40 and 0.25 respectively, indicating that the predicted values matched the observed values reasonably well. Taken together, the SARIMA model could be employed to forecast scarlet fever incidence trend, providing support for scarlet fever control and prevention.
To explore whether embryo culture with melatonin (MT) can improve the embryonic development and clinical outcome of patients with repeated cycles after in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) failure, immature oocytes from controlled ovarian superovulation cycles were collected for in vitro maturation (IVM) and ICSI. The obtained embryos were cultured in 0, 10–11, 10–9, 10–7 and 10–5 M MT medium respectively, and 10–9 M was screened out as the optimal concentration. Subsequently, 140 patients who underwent failed IVF/ICSI cycles received 140 cycles of embryo culture in vitro with a medium containing 10–9 M MT, these 140 MT culture cycles were designated as the experimental group (10–9 M group), and the control group was the previous failed cycles of patients (0 M group). The results showed that the fertilization, cleavage, high-quality embryo, blastocyst, and high-quality blastocyst rates of the 10–9 M group were significantly higher than those of the 0 M group (P < 0.01; P < 0.01; P < 0.0001; P < 0.0001; P < 0.0001). To date, in total, 50 vitrified-warmed cycle transfers have been performed in the 10–9 M group and the implantation rate, biochemical pregnancy rate and clinical pregnancy rate were significantly higher than those in the 0 M group (all P < 0.0001). Two healthy infants were delivered successfully and the other 18 women who achieved clinical pregnancy also had good examination indexes. Therefore the application of 10–9 M MT to embryo cultures in vitro improved embryonic development in patients with repeated cycles after failed IVF/ICSI cycles and had good clinical outcomes.
Previous studies have demonstrated structural and functional changes of the hippocampus in patients with major depressive disorder (MDD). However, no studies have analyzed the dynamic functional connectivity (dFC) of hippocampal subregions in melancholic MDD. We aimed to reveal the patterns for dFC variability in hippocampus subregions – including the bilateral rostral and caudal areas and its associations with cognitive impairment in melancholic MDD.
Methods
Forty-two treatment-naive MDD patients with melancholic features and 55 demographically matched healthy controls were included. The sliding-window analysis was used to evaluate whole-brain dFC for each hippocampal subregions seed. We assessed between-group differences in the dFC variability values of each hippocampal subregion in the whole brain and cognitive performance on the MATRICS Consensus Cognitive Battery (MCCB). Finally, association analysis was conducted to investigate their relationships.
Results
Patients with melancholic MDD showed decreased dFC variability between the left rostral hippocampus and left anterior lobe of cerebellum compared with healthy controls (voxel p < 0.005, cluster p < 0.0125, GRF corrected), and poorer cognitive scores in working memory, verbal learning, visual learning, and social cognition (all p < 0.05). Association analysis showed that working memory was positively correlated with the dFC variability values of the left rostral hippocampus-left anterior lobe of the cerebellum (r = 0.338, p = 0.029) in melancholic MDD.
Conclusions
These findings confirmed the distinct dynamic functional pathway of hippocampal subregions in patients with melancholic MDD, and suggested that the dysfunction of hippocampus-cerebellum connectivity may be underlying the neural substrate of working memory impairment in melancholic MDD.
Kinetic energy flux (KEF) is an important physical quantity that characterizes cascades of kinetic energy in turbulent flows. In large-eddy simulation (LES), it is crucial for the subgrid-scale (SGS) model to accurately predict the KEF in turbulence. In this paper, we propose a new eddy-viscosity SGS model constrained by the properly modelled KEF for LES of compressible wall-bounded turbulence. The new methodology has the advantages of both accurate prediction of the KEF and strong numerical stability in LES. We can obtain an approximate KEF by the tensor-diffusivity model, which has a high correlation with the real value. Then, using the artificial neural network method, the local ratios between the real KEF and the approximate KEF are accurately modelled. Consequently, the SGS model can be improved by the product of that ratio and the approximate KEF. In LES of compressible turbulent channel flow, the new model can accurately predict mean velocity profile, turbulence intensities, Reynolds stress, temperature–velocity correlation, etc. Additionally, for the case of a compressible flat-plate boundary layer, the new model can accurately predict some key quantities, including the onset of transitions and transition peaks, the skin-friction coefficient, the mean velocity in the turbulence region, etc., and it can also predict the energy backscatters in turbulence. Furthermore, the proposed model also shows more advantages for coarser grids.
Laser–plasma accelerators (LPAs) have great potential to realize a compact X-ray free-electron laser (FEL), which is limited by the beam properties currently. Two-color high-intensity X-ray FEL provides a powerful tool for probing ultrafast dynamic systems. In this paper, we present a simple and feasible method to generate a two-color X-ray FEL pulse based on an LPA beam. In this scheme, time-dependent mismatch along the bunch is generated and manipulated by the designed lattice system, enabling FEL lasing at different wavelength within two undulator sections. The time separation between the two pulses can be precisely adjusted by varying the time-delay chicane. Numerical simulations show that two-color soft X-ray FELs with gigawatt-level peak power and femtosecond duration can be generated, which confirm the validity and feasibility of the scheme.
The article aims to estimate and forecast the transmissibility of shigellosis and explore the association of meteorological factors with shigellosis. The mathematical model named Susceptible–Exposed–Symptomatic/Asymptomatic–Recovered–Water/Food (SEIARW) was used to explore the feature of shigellosis transmission based on the data of Wuhan City, China, from 2005 to 2017. The study applied effective reproduction number (Reff) to estimate the transmissibility. Daily meteorological data from 2008 to 2017 were used to determine Spearman's correlation with reported new cases and Reff. The SEIARW model fit the data well (χ2 = 0.00046, p > 0.999). The simulation results showed that the reservoir-to-person transmission of the shigellosis route has been interrupted. The Reff would be reduced to a transmission threshold of 1.00 (95% confidence interval (CI) 0.82–1.19) in 2035. Reducing the infectious period to 11.25 days would also decrease the value of Reff to 0.99. There was a significant correlation between new cases of shigellosis and atmospheric pressure, temperature, wind speed and sun hours per day. The correlation coefficients, although statistically significant, were very low (<0.3). In Wuhan, China, the main transmission pattern of shigellosis is person-to-person. Meteorological factors, especially daily atmospheric pressure and temperature, may influence the epidemic of shigellosis.
The Middle Miocene Climatic Optimum is known for abrupt events during the global cooling trend of the past 20 Ma. Its identification in the Tibetan Plateau can help explain the cause of the critical Middle Miocene climate transition in Central Asia. In this study, fine-grained mixed sediments widely distributed in the Miocene Qaidam Lake in the northern Tibetan Plateau were used as a sensitive indicator for palaeoclimate. Their geochemical characteristics were investigated, together with an analysis of 2600 m long successive gamma-ray logging data from the whole JS2 drillcore, to understand the mid-Miocene climate transition in the Tibetan Plateau. By comparing the gamma-ray curve of the mixed sediments with global temperature, the Middle Miocene Climatic Optimum event can be easily identified. Further, the detailed petrological features and geochemical data of lacustrine fine-grained mixed sediments from a 400 m drillcore show oxidizing, high-sedimentation rate and brackish-saline water conditions in a semi-arid climate during the Middle Miocene period, demonstrating a dryer climate in the Qaidam Basin than in the monsoon-sensitive regions in Central Asia. These fine-grained mixed sediments have recorded climate drying before 15.3 Ma that represents a climatic transition within the Middle Miocene Climatic Optimum; increasing carbonate-rich mixed sediments, decreasing algal limestone layers and decreasing lacustrine organic matter are indicators of this transition. Regional tectonic events include the retreat of the Paratethys from Central Asia at ∼15 Ma and the synchronous tectonic reorganization of the Altyn-Tagh fault system and the northeastern Tibetan Plateau. We find that global climate change is the primary factor affecting the overall characteristics and changes of the Neogene climate in the Qaidam Basin, including the occurrence of the Middle Miocene Climatic Optimum and the cooling and drying tendency, while the regional events are a secondary factor.
The Democratic Republic of the Congo (DRC) has one of the highest levels of child undernutrition globally; however, little information exists on the underlying socio-economic inequalities resulting in undernutrition. This study aims to examine the differences in the nutritional statuses of children across different wealth quintiles and explores the association between malnutrition in children and related factors.
Design:
We utilised the 2018 Multiple Indicator Cluster Survey data. We estimated the prevalence of malnutrition across all twenty-six provinces. The study used the WHO 2006 child growth standards to measure stunting, underweight and wasting. We employed a mixed-effect linear model to analyse the association between nutritional status and healthcare accessibility, domestic sanitation, and socio-demographic factors.
Setting:
Twenty-six provinces in the DRC.
Participants:
21 477 children under 5 years of age and 21 828 women of childbearing age in the DRC.
Results:
The national prevalence of underweight, stunting and wasting was found to be 23·33 %, 42·05 % and 5·66 %, respectively. Household wealth and mother’s education level were significantly positively associated with the nutritional statuses of children. Among households in the lowest wealth quintile, residence in urban areas was a protective factor against undernutrition.
Conclusion:
The findings of this study indicate considerable socio-economic inequalities in the nutritional statuses of children under 5 years of age in the DRC, highlighting the need for nutrition promotion as part of maternal and child healthcare. Interventions and policies should include improving nutrition education for less-educated mothers, in particular, in the central provinces of the DRC.
Varicella is a highly infectious contagious disease, and Chongqing is one of the high incidence areas in China. To understand the epidemic regularity and predict the epidemic trend of varicella is of great significance to the risk analysis and health resource allocation in the health sector. First, we used the ‘STL’ function to decompose the incidence of varicella to understand its trend and seasonality. Second, we established SARIMA model for linear fitting, and then took the residual of the SARIMA model as the sample to fit the LS-SVM model, to explain the non-linearity of the residuals. The monthly varicella incidence peaks in April to June and October to December. Mixed model was compared to SARIMA model, the prediction error of the hybrid model was smaller, and the RMSE and MAPE values of the hybrid model were 0.7525 and 0.0647, respectively, the mixed model had a better prediction effect. Based on the study, the incidence of varicella in Chongqing has an obvious seasonal trend, and a hybrid model can also predict the incidence of varicella well. Thus, hybrid model analysis is a feasible and simple method to predict varicella in Chongqing.
Tremendous progress has been made in the field of ferroptosis since this regulated cell death process was first named in 2012. Ferroptosis is initiated upon redox imbalance and driven by excessive phospholipid peroxidation. Levels of multiple intracellular nutrients (iron, selenium, vitamin E and coenzyme Q10) are intimately related to the cellular antioxidant system and participate in the regulation of ferroptosis. Dietary intake of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) regulates ferroptosis by directly modifying the fatty acid composition in cell membranes. In addition, amino acids and glucose (energy stress) manipulate the ferroptosis pathway through the nutrient-sensitive kinases mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK). Understanding the molecular interaction between nutrient signals and ferroptosis sensors might help in the identification of the roles of ferroptosis in normal physiology and in the development of novel pharmacological targets for the treatment of ferroptosis-related diseases.
This study aimed to investigate the environmental contamination of nucleic acid at 2019 novel coronavirus (2019-nCOV) vaccination site and to evaluate the effect of improvement to the vaccination process. Nucleic acid samples were collected from the surface of the objects in 2019-nCOV vaccination point A (used between 15 November 2020 and 25 December 2020) and point B (used after 27 December 2020) in a comprehensive tertiary hospital. Samples were collected from point A before improvement to the vaccination process, and from point B (B1 and B2) after improvement to the vaccination process. The real-time fluorescence polymerase chain reaction method was used for detection. The positive rate of vaccination room was 47.06% (24/51) at point A. No positive result was found in point B1 both at working hours (0/27) and after terminal disinfection (0/27). In point B2, the positive results were found in vaccine's outer packaging and staff gloves at working hours, with a positive rate of 7.41% (2/27). The positive rate was 0 (0/27) after terminal disinfection in point B2. The nucleic acid contamination in the vaccination room of 2019-nCOV vaccine nucleic acid sampling point is serious, which can be avoided through the improvement and intervention (such as personal protection, vaccination operation and disinfection methods).
Antibiotic resistance (ABR) threatens the effectiveness of infectious disease treatments and contributes to increasing global morbidity and mortality. In this study, we systematically reviewed the identified risk factors for ABR among people in the healthcare system of mainland China. Five databases were systematically searched to identify relevant articles published in either English and Chinese between 1 January 2003 and 30 June 2019. A total of 176 facility-based references were reviewed for this study, ranging across 31 provinces in mainland China and reporting information from over 50 000 patients. Four major ABR risk factor domains were identified: (1) sociodemographic factors (includes migrant status, low income and urban residence), (2) patient clinical information (includes disease status and certain laboratory results), (3) admission to healthcare settings (includes length of hospitalisation and performance of invasive procedures) and (4) drug exposure (includes current or prior antibiotic therapy). ABR constitutes an ongoing major public health challenge in China. The healthcare sector-associated risk factors was the most important aspect identified in this review and need to be addressed. Primary health care system and ABR surveillance networks need to be further strengthened to prevent and control the communicable diseases, over-prescription and overuse of antibiotics.
Inflammation might play a role in bipolar disorder (BD), but it remains unclear the relationship between inflammation and brain structural and functional abnormalities in patients with BD. In this study, we focused on the alterations of functional connectivity (FC), peripheral pro-inflammatory cytokines and their correlations to investigate the role of inflammation in FC in BD depression.
Methods
In this study, 42 unmedicated patients with BD II depression and 62 healthy controls (HCs) were enrolled. Resting-state-functional magnetic resonance imaging was performed in all participants and independent component analysis was used. Serum levels of Interleukin-6 (IL-6) and Interleukin-8 (IL-8) were measured in all participants. Correlation between FC values and IL-6 and IL-8 levels in BD was calculated.
Results
Compared with the HCs, BD II patients showed decreased FC in the left orbitofrontal cortex (OFC) implicating the limbic network and the right precentral gyrus implicating the somatomotor network. BD II showed increased IL-6 (p = 0.039), IL-8 (p = 0.002) levels. Moreover, abnormal FC in the right precentral gyrus were inversely correlated with the IL-8 (r = −0.458, p = 0.004) levels in BD II. No significant correlation was found between FC in the left OFC and cytokines levels.
Conclusions
Our findings that serum IL-8 levels are associated with impaired FC in the right precentral gyrus in BD II patients suggest that inflammation might play a crucial role in brain functional abnormalities in BD.
The aim of this study was to investigate the changes in Chinese residents’ psychological state and its influencing factors after the Wuhan shutdown on January 23, 2020.
Methods:
Two surveys were conducted on February 1-5 and February 20-24, separately, using an online self-administrated questionnaire among 3145 and 3814 participants, respectively. Subjective indicators of daily-life changes include level of attention, risk of infection, impact of daily life, self-perceived health status, and mental health help-seeking. Individual scores on changes in anxiety, depression, and stress were generated by 6-item, 4-item, and 3-item questions. A multivariate regression model was fitted in each survey, separately and combined.
Results:
A total of 6959 residents participated in the study, with 32.78% male and 67.22% female, people living in Wuhan and other cities in Hubei Province accounted for 25.22% and 18.85%, respectively. One week after the Wuhan shutdown, their anxiety, depression, and stress had all increased. Compared with the first survey, the changes in the scores of anxiety, depression, and stress in the second survey were decreased (β = −1.220, −0.798, and −0.623, all P < 0.001). The level of attention, risk of infection, and self-perceived health status tended to be positively associated with the changes in the scores of anxiety, depression, and stress.
Conclusions:
The study showed that the lives and psychological conditions of residents had undergone negative changes after the Wuhan shutdown, but the measures taken during this period were effective. These results may provide guidance for public health policies in other countries and regions.
Carbon nanotube foams (CNFs) have been successfully used as near-critical-density targets in the laser-driven acceleration of high-energy ions and electrons. Here we report the recent advances in the fabrication technique of such targets. With the further developed floating catalyst chemical vapor deposition (FCCVD) method, large-area ($>25\kern0.5em {\mathrm{cm}}^2$) and highly uniform CNFs are successfully deposited on nanometer-thin metal or plastic foils as double-layer targets. The density and thickness of the CNF can be controlled in the range of $1{-}13\kern0.5em \mathrm{mg}/{\mathrm{cm}}^3$ and $10{-}200\kern0.5em \mu \mathrm{m}$, respectively, by varying the synthesis parameters. The dependence of the target properties on the synthesis parameters and the details of the target characterization methods are presented for the first time.
The disease burden of infectious diarrhea cannot be underestimated. Its seasonal patterns indicate that weather patterns may play an important role and have an important effect on it. The objective of this study was to clarify the relationship between temperature and infectious diarrhea, and diarrhea-like illness.
Methods:
Distributed lag non-linear model, which was based on the definition of a cross-basis, was used to examine the effect.
Results:
Viral diarrhea usually had high incidence in autumn-winter and spring with a peak at -6°C; Norovirus circulated throughout the year with an insignificant peak at 8°C, while related bacteria usually tested positive in summer and peaked at 22°C. The lag-response curve of the proportion of diarrhea-like cases in outpatient and emergency cases revealed that at -6°C, with the lag days increasing, the proportion increased. Similar phenomena were observed at the beginning of the curves of virus and bacterial positive rate, showing that the risk increased as the lag days increased, peaking on days 16 and 9, respectively. The shape of lag-response curve of norovirus positive rate was different from others, presenting m-type, with 2 peaks on day 3 and day 18.
Conclusion:
Weather patterns should be taken into account when developing surveillance programs and formulating relevant public health intervention strategies.