We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For some Banach spaces of analytic functions in the unit disk (weighted Bergman spaces, Bloch space, Dirichlet-type spaces), the isometric pointwise multipliers are found to be unimodular constants. As a consequence, it is shown that none of those spaces have isometric zero-divisors. Isometric coefficient multipliers are also investigated.
Harmonic mappings in the plane are univalent complex-valued harmonic functions of a complex variable. Conformal mappings are a special case where the real and imaginary parts are conjugate harmonic functions, satisfying the Cauchy-Riemann equations. Harmonic mappings were studied classically by differential geometers because they provide isothermal (or conformal) parameters for minimal surfaces. More recently they have been actively investigated by complex analysts as generalizations of univalent analytic functions, or conformal mappings. Many classical results of geometric function theory extend to harmonic mappings, but basic questions remain unresolved. This book is the first comprehensive account of the theory of planar harmonic mappings, treating both the generalizations of univalent analytic functions and the connections with minimal surfaces. Essentially self-contained, the book contains background material in complex analysis and a full development of the classical theory of minimal surfaces, including the Weierstrass-Enneper representation. It is designed to introduce non-specialists to a beautiful area of complex analysis and geometry.
In this note we study the zeros of solutions of differential equations of the form u′′+pu=0. A criterion for oscillation is found, and some sharper forms of the Sturm comparison theorem are given.
For analytic functions in the unit disk, general bounds on the Schwarzian derivative in terms of Nehari functions are shown to imply uniform local univalence and in some cases finite and bounded valence. Similar results are obtained for the Weierstrass–Enneper lifts of planar harmonic mappings to their associated minimal surfaces. Finally, certain classes of harmonic mappings are shown to have finite Schwarzian norm.
This chapter deals with harmonic mappings of the unit disk onto convex regions. The simplest examples, the harmonic self-mappings of the disk, are singled out for detailed treatment in Chapter 4. The present chapter will focus on two important structural properties of convex mappings. The first is the celebrated Radó–Kneser–Choquet theorem, which constructs a harmonic mapping of the disk onto any bounded convex domain, with prescribed boundary correspondence. The second is the “shear construction” of a harmonic mapping with prescribed dilatation onto a domain convex in a given direction. This leads to an analytic description of convex mappings, which has various applications.
The Radó–Kneser–Choquet Theorem
Let Ω ⊂ ℂ be a domain bounded by a Jordan curve Γ. Each homeomorphism of the unit circle onto Γ has a unique harmonic extension to the unit disk, defined by the Poisson integral formula. The values of this harmonic extension must lie in the closed convex hull of Ω in view of the “averaging” property of the Poisson integral. It is a remarkable fact that if Ω is convex, this harmonic extension is always univalent and it maps the disk harmonically onto Ω.
This theorem was first stated in 1926 by Tibor Radó [1], who posed it as a problem in the Jahresberichte. Helmut Kneser [1] then supplied a brief but elegant proof. A period of almost 20 years elapsed before Gustave Choquet [1], apparently unaware of Kneser's note, rediscovered the result and gave a detailed proof that has some features in common with Kneser's but is not the same. In fact, the two approaches allow the theorem to be generalized in different directions. We shall present both proofs, beginning with Kneser's.
Harmonic mappings in the plane are univalent complex-valued harmonic functions whose real and imaginary parts are not necessarily conjugate. In other words, the Cauchy–Riemann equations need not be satisfied, so the functions need not be analytic. Although harmonic mappings are natural generalizations of conformal mappings, they were studied originally by differential geometers because of their natural role in parametrizing minimal surfaces. Only in the mid-1980s did harmonic mappings begin to attract widespread interest among complex analysts. The catalyst was a landmark paper by James Clunie and Terry Sheil-Small in 1984, pointing out that many of the classical results for conformal mappings have clear analogues for harmonic mappings. Since that time the subject has developed rapidly, although a number of basic problems remain unresolved. This book is an attempt to make this beautiful material accessible to a wider mathematical public.
Most of the book concerns harmonic mappings in the plane, but there are occasional excursions into higher dimensions, if only to provide counterexamples. As a general rule, the rich structure of theory in the plane does not extend to higher-dimensional space. In many instances, the properties of analytic univalent functions serve as models for generalizations to harmonic mappings, but other results are peculiar to analytic functions and do not extend to more general harmonic mappings. On the other hand, some results for harmonic mappings have no counterpart for conformal mappings. This is particularly true of the connections with minimal surfaces, which are developed in the final two chapters.