We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is important to know how much of the increased atmospheric CO2 is derived from fossil fuel emissions. Here, we review the progress in atmospheric fossil fuel CO2 (CO2ff) tracing over recent years by measurement of Δ14C in Chinese cities. In this paper we make progress by expanding the analysis from some locations to more regional views, by combining observations with modeling, and by making a preliminary comparison of observation-derived CO2ff with inventory-derived CO2ff. We have obtained a general picture of Chinese urban CO2ff and characteristics of its spatio-temporal variations at different scale, and identified the corresponding influencing factors. Interestingly, we found that the weekend effect of CO2ff was less evident in Chinese cities. In addition, we observed simultaneous variations in CO2ff and PM2.5 in a winter haze event in Beijing and a simultaneous decrease in annual averages of CO2ff and PM2.5 in Xi’an based on multi-year (2011–2016) Δ14CO2 monitoring. We found that local coal combustion was the main source of CO2ff in Xi’an, which is located in the Guanzhong basin, by applying a WRF-Chem model and looking at δ13C signatures. Thus, reduction of coal consumption is a crucial target for carbon emissions reduction in China.
Ammannia multiflora Roxb. is a dominant broadleaf weed that is a serious problem in southern China rice fields, and acetolactate synthase (ALS)-inhibiting herbicides have been used for its control for more than 20 years. Excessive reliance on ALS-inhibiting herbicides has led to herbicide resistance in A. multiflora. In this study, 10 A. multiflora populations from the Jiangsu Province of China were collected, and the resistance levels and target site–resistance mechanisms to ALS-inhibiting herbicides bensulfuron-methyl and penoxsulam were investigated. The dose–response assays showed that eight populations evolved resistance to bensulfuron-methyl (9.1- to 90.9-fold) and penoxsulam (5.0- to 103.1-fold). Amplification of ALS genes indicated that there were three ALS genes (AmALS1, AmALS2, and AmALS3) in A. multiflora. Sequence analysis revealed amino acid mutations at Pro-197 in either AmALS1 (Pro-197-Ala, Pro-197-Ser, and Pro-197-His) or AmALS2 (Pro-197-Ser and Pro-197-Arg) in resistant populations, and no mutations were found in AmALS3. Moreover, two independent mutations (Pro-197-Ala in AmALS1 and Pro-197-Ser in AmALS2 or Pro-197-Ala in AmALS1 and Pro-197-Arg in AmALS2) coexisted in two resistant populations, respectively. In addition, the auxin mimic herbicides MCPA and florpyrauxifen-benzyl, the photosystem II inhibitor bentazon, and the protoporphyrinogen oxidase inhibitor carfentrazone-ethyl can effectively control the resistant A. multiflora populations. Our study demonstrates the wide prevalence of ALS inhibitor–resistant A. multiflora populations in Jiangsu Province and the diversity of Pro-197 mutations in ALS genes and provides alternative herbicide options for controlling resistant A. multiflora populations.
To compare the prevalence of overweight or obesity (ow/ob) with WHO BMI cut-off points, International Obesity Task Force (IOTF) cut-off points and Chinese BMI criteria and examine its potential factors among preschool children in Hunan Province.
Design:
A cross-sectional survey including anthropometric measurements and questionnaires about children’s information, caregivers’ socio-demographic characteristics and maternal characteristics. χ2 tests and univariate and multivariate binary logistic regression were performed to evaluate the possible factors of ow/ob.
Setting:
Hunan, China, from September to October 2019.
Participants:
In total, 7664 children 2 to 6 years of age.
Results:
According to Chinese BMI criteria, about 1 in 7–8 children aged 2–6 years had ow/ob in Hunan, China. The overall estimated prevalence of ow/ob among 2- to 6-year-old children was significantly higher when based on the Chinese BMI criteria compared with the WHO BMI cut-off points and IOTF cut-off points. According to Chinese BMI criteria, ow/ob was associated with residing in urban areas, older age, male sex, eating snacking food more frequently, macrosomia delivery, caesarean birth, heavier maternal prepregnancy weight and pre-delivery weight.
Conclusion:
The prevalence of ow/ob in preschool children in Hunan Province remains high. More ow/ob children could be screened out according to Chinese BMI cut-offs compared with WHO and IOTF BMI criteria. In the future, targeted intervention studies with matched controls will be needed to assess the long-term effects of intervention measures to provide more information for childhood obesity prevention and treatment.
Lacustrine sediments are important archives for paleoclimate research, but there are evident carbon reservoir effects. Radiocarbon (14C) ages of lake sediments must be corrected for these effects before applying them to paleoclimate research. The authors review the lacustrine research from the last 20 years from different climatic regions in China, and systematically investigate the 14C age and correction methods used in the studies of 81 lakes. It is found that the climate-vegetation cover and distribution of carbonate around lakes are dominant factor controlling radiocarbon reservoir effects. In eastern China, the average 14C reservoir age is about 500 14C years and is associated with relatively dense vegetation. However, in northwest China and Qinghai-Tibet Plateau, widespread carbonate bedrock may markedly increase the radiocarbon reservoir age which frequently is about 1500 and 2500 14C years. A piecewise linear regression model provides more reliable 14C reservoir age correction that accounts for sedimentary facies and sedimentation rate changes. It is worth mentioning that when analyzing 14C ages deviated greatly from time sequence, the age anomalies may indicate important effects relevant to the study of climate and environmental changes.
The stability of the two-layer film flow driven by an oscillatory plate under long-wave disturbances is studied. The influence of key factors, such as thickness ratio ($n$), viscosity ratio ($m$), density ratio ($r$), oscillatory frequency ($\beta$) and insoluble surfactants on the stability behaviours is studied systematically. Four special Floquet patterns are identified, and the corresponding growth rates are obtained by solving the eigenvalue problem of the fourth-order matrix. A small viscosity ratio ($m\le 1$) may stabilize the flow but it depends on the thickness ratio. If the viscosity ratio is not very small ($m>0.1$), in the $(\beta ,n)$-plane, stable and unstable curved stripes appear alternately. In other words, under the circumstances, if the two-layer film flow is unstable, slightly adjusting the thickness of the upper film may make it stable. In particular, if the upper film is thin enough, even under high-frequency oscillation, the flow is always stable. The influence of density ratio is similar, i.e. there are curved stable and unstable stripes in the $(\beta ,r)$-planes. Surface surfactants generally stabilize the flow of the two-layer oscillatory membrane, while interfacial surfactants may stabilize or destabilize the flow but the effect is mild. It is also found that gravity can generally stabilize the flow because it narrows the bandwidth of unstable frequencies.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
Ludwigia prostrata is a problematic weed in rice fields in China, where acetolactate synthase (ALS)-inhibiting herbicides (e.g., bensulfuron-methyl) are widely used for the management of broadleaf weeds. Recently, an L. prostrata biotype (JS-R) that failed to be controlled with ALS-inhibiting herbicides was found in Jiangsu Province, China. This study aims to determine the level and molecular mechanism of resistance to bensulfuron-methyl in this JS-R biotype and to evaluate its spectrum of cross-resistance to other ALS-inhibiting herbicides. The dose–response assays indicated that the JS-R L. prostrata biotype had evolved 21.2-fold resistance to bensulfuron-methyl compared with the susceptible biotype (JS-S). ALS gene sequencing revealed that a nucleotide mutation (CCA to TCA) at codon 197, resulting in a Pro-197-Ser mutation, was detected in the resistant plants. Moreover, while the JS-R biotype contained the Pro-197-Ser resistance mutation and showed cross-resistance to pyrazosulfuron-ethyl (12.0-fold), it was sensitive to penoxsulam, bispyribac-sodium, and imazethapyr, which may serve as alternative herbicides to control the resistant L. prostrata biotype. This is the first confirmation of an L. prostrata biotype resistant to bensulfuron-methyl due to a Pro-197-Ser resistance mutation in the ALS gene.
In this thesis, we study Turing degrees in the context of classical recursion theory. What we are interested in is the partially ordered structures
$\mathcal {D}_{\alpha }$
for ordinals
$\alpha <\omega ^2$
and
$\mathcal {D}_{a}$
for notations
$a\in \mathcal {O}$
with
$|a|_{o}\geq \omega ^2$
.
The dissertation is motivated by the
$\Sigma _{1}$
-elementary substructure problem: Can one structure in the following structures
$\mathcal {R}\subsetneqq \mathcal {D}_{2}\subsetneqq \dots \subsetneqq \mathcal {D}_{\omega }\subsetneqq \mathcal {D}_{\omega +1}\subsetneqq \dots \subsetneqq \mathcal {D(\leq \textbf {0}')}$
be a
$\Sigma _{1}$
-elementary substructure of another? For finite levels of the Ershov hierarchy, Cai, Shore, and Slaman [Journal of Mathematical Logic, vol. 12 (2012), p. 1250005] showed that
$\mathcal {D}_{n}\npreceq _{1}\mathcal {D}_{m}$
for any
$n < m$
. We consider the problem for transfinite levels of the Ershov hierarchy and show that
$\mathcal {D}_{\omega }\npreceq _{1}\mathcal {D}_{\omega +1}$
. The techniques in Chapters 2 and 3 are motivated by two remarkable theorems, Sacks Density Theorem and the d.r.e. Nondensity Theorem.
In Chapter 1, we first briefly review the background of the research areas involved in this thesis, and then review some basic definitions and classical theorems. We also summarize our results in Chapter 2 to Chapter 4. In Chapter 2, we show that for any
$\omega $
-r.e. set D and r.e. set B with
$D<_{T}B$
, there is an
$\omega +1$
-r.e. set A such that
$D<_{T}A<_{T}B$
. In Chapter 3, we show that for some notation a with
$|a|_{o}=\omega ^{2}$
, there is an incomplete
$\omega +1$
-r.e. set A such that there are no a-r.e. sets U with
$A<_{T}U<_{T}K$
. In Chapter 4, we generalize above results to higher levels (up to
$\varepsilon _{0}$
). We investigate Lachlan sets and minimal degrees on transfinite levels and show that for any notation a, there exists a
$\Delta ^{0}_{2}$
-set A such that A is of minimal degree and
$A\not \equiv _T U$
for all a-r.e. sets U.
A fever clinic within a hospital plays a vital role in pandemic control because it serves as an outpost for pandemic discovery, monitoring and handling. As the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan was gradually brought under control, the fever clinic in the West Campus of Wuhan Union Hospital introduced a new model for construction and management of temporary mobile isolation wards. A traditional battlefield hospital model was combined with pandemic control regulations, to build a complex of mobile isolation wards that used adaptive design and construction for medical operational, medical waste management and water drainage systems. The mobile isolation wards allowed for the sharing of medical resources with the fever clinic. This increased the capacity and efficiency of receiving, screening, triaging and isolation and observation of patients with fever. The innovative mobile isolation wards also controlled new sudden outbreaks of COVID-19. We document the adaptive design and construction model of the novel complex of mobile isolation wards and explain its characteristics, functions and use.
The associations between suicidal behaviours and childhood maltreatment (CM), as well as Internet addiction (IA) have been extensively examined. However, few studies pay attention to different types of CM and all stages of suicidality, including suicidal ideation (SI), suicidal plans (SP) and suicidal attempts (SA). Moreover, little is known regarding the mediation of IA on the relationship between CM and suicidal behaviours. The study aims to explore the direct effect of CM and IA on three stages of suicidal behaviours, and the indirect effect of CM on suicidality via IA.
Methods
A total of 16 130 high-school students aged 12–18 were recruited using a stratified cluster sampling strategy across five representative provinces in China. Relevant information was collected by a self-administered anonymous questionnaire. Multinomial logistic regression analysis and structural equation model were used to examine the associations.
Results
During the last year, 16.0% of participants reported suicidal behaviours. Specifically, 7.9% reported SI only, 4.6% reported SP but no SA, and 3.5% reported SA. The prevalence of neglect, physical abuse and IA in moderate to severe were 28.9, 19.9 and 33.1%, respectively. After controlling for demographic characteristics and confounding factors, such as loneliness, psychological resilience, and social support, moderate and severe neglect, physical abuse and IA were associated with an increased risk of SI, SP and SA (p < 0.01). The total effect of neglect and physical abuse on suicidal behaviours were 0.152 and 0.172, respectively (p < 0.001). The mediation proportion of IA on the association between neglect and suicidal behaviours, as well as physical abuse and suicidal behaviours were 22.4 and 18.0%, respectively.
Conclusions
CM and IA are independently associated with suicidal behaviours among Chinese adolescents. Moreover, IA plays a mediating role on the relationship between CM and suicidality. Targeted interventions for adolescents’ suicidal behaviours should focus on those who have experience of CM and IA.
Aggressive behaviour is common in animals and typically has lifetime consequences. As younger males have higher residual reproductive value than older males and lose more from injuries than older males do, the propensity for fighting tends to increase with age in many empirical reports and species. However, fighting patterns in those empirical reports cannot confirm the hypothesis that individuals cannot readily inflict injuries on their opponents. To address this shortcoming, a parasitoid wasp species, Anastatus disparis (Hymenoptera: Eupelmidae), was used as an experimental model to explore the characteristics of aggression from a life-history perspective; this wasp exhibits extreme fighting, resulting in contestants experiencing injury and death. Results showed that the energetic costs of fighting to injury significantly shortened life and caused the loss of most mating ability. Inconsistent with general predictions, the frequency and intensity of fighting in A. disparis significantly decreased with male age. Further study results showed significantly more young males were received by and successfully mated with virgin females, and most genes related to energy metabolism were downregulated in aged males. Our study provided supporting evidence that young A. disparis males show more aggression likely because of their resource holding potential and sexual attractiveness decline with age.
With the popularization of carbon and nitrogen stable-isotope analysis methods used on archaeological samples from Xinjiang, the ancient paleodiet there has been revealed. However, research about isotopic analysis combined with environmental factors is rare, especially in such a variable and complex climate as that of the Tianshan region. We systematically analyzed the δ13C and δ15N results from animals and humans for dietary reconstruction of nomadic pastoralists from the Tianshan region during 3900–1200 cal BP. The δ13C and δ15N values for animals (sheep/goat, horse and cattle; n = 57) have a wide range from –20.8‰ to –14.7‰ for δ13C (–19.2 ± 1.0‰) and 3.2‰ to 9.9‰ for δ15N (7.0 ± 1.2‰). The δ13C and δ15N values from humans range from –19.6 to –12.3‰ (–16.0 ± 1.5‰) and 7.1 to 16.7‰ (–13.6 ± 1.5‰), respectively. The animal δ15N results indicate that the dry environment in the Tianshan region may result in elevated δ15N values. Synthesizing animal and human isotope results suggests that the inhabitants engaged in mobile herding economies subsidized with crops and wild animal meat from the Tianshan Mountains. In conclusion, we found that the regional environment closely relates to crop types, and temporal climate change has an effect on human dietary structure. Therefore, climate condition cannot be ignored when studying human paleodiet.
A gravity-driven water film falling down an ice sheet is considered within the framework of a long-wave approximation. The integral-boundary-layer method, modified with the account of the phase transition, is adopted to describe the evolution of both the free surface of a water film and the interface between the ice and water. A set of governing equations consisting of five coupled nonlinear partial differential equations is established. The linear instability analysis of the uniform base flow is performed, and the result is in good agreement with the Orr–Sommerfeld analysis of the linearized Navier–Stokes equations. The phase transition at the interface between the ice and water plays a role in stabilizing the system linearly with long-wavelength perturbations. The nonlinear solutions of the steady travelling waves are constructed numerically. The phase transition tends to suppress the dispersion of the interfacial wave. Comparisons to direct numerical simulation of the Navier–Stokes equations, which are performed with an extended marker and cell method, show a remarkable agreement. The integral-boundary-layer method captures the water film thickness and the topography of the ice sheet satisfactorily. The phase transition is observed to enhance the backflow phenomenon in the capillary region of the solitary-like interfacial wave.
In this study, low temperature (room temperature, 400°C LT) and high temperature (400–900°C HT) of bulk organic carbon samples were dated from two loess and paleosol profiles. The results showed that radiocarbon (14C) dates of the LT were younger than HT fractions, indicating effect of younger contamination from overlying layers. The δ13C variation of the HT fraction appears to respond much more sensitively to climate change, and 14C ages of HT fraction can produce reasonable 14C ages from a younger layer, but it is very difficult to obtain reliable 14C ages from older layer as a result of uncomplete removal of young carbon.
Chinese sprangletop [Leptochloa chinensis (L.) Nees] is one grass weed severely affecting rice (Oryza sativa L.) growth in paddies in China. Cyhalofop-butyl is the main herbicide used to control grass weeds in Chinese paddy fields, especially for controlling L. chinensis; however, L. chinensis has evolved resistance to cyhalofop-butyl due to continuous and extensive application. To investigate cyhalofop-butyl resistance levels and mechanisms in L. chinensis in some of the Chinese rice areas, 66 field populations were collected and treated with cyhalofop-butyl. Of these tested populations, 10 showed a high level of resistance to cyhalofop-butyl; the 50% effective dose ranged within 108.4 to 1,443.5 g ai ha−1 with resistance index values of 9.1 to 121.8 when compared with the susceptible population. Acetyl-coenzyme A carboxylase genes (ACCase) of susceptible and all 10 resistant populations were amplified and sequenced. Among them, Ile-1781-Leu, Trp-2027-Cys, Trp-2027-Ser, and Ile-2041-Asn mutations were found in five resistant populations. No known resistance-related mutations were found in the other five resistant populations, indicating that resistance to cyhalofop-butyl in these populations was likely to be endowed by non–target site resistance mechanisms. Notably, the Ile-1781-Leu and Trp-2027-Cys substitutions have previously been reported, but this is the first report of Trp-2027-Ser and Ile-2041-Asn mutations in L. chinensis. Furthermore, three derived cleaved amplified polymorphic sequence methods were developed to rapidly detect these mutations in L. chinensis.
Current understanding of turbulence modulation by solid particles is incomplete as making reliable predictions on the nature and level of modulation remains a challenging task. Multiple modulation mechanisms may be simultaneously induced by particles, but the lack of reliable methods to identify these mechanisms and quantify their effects hinders a complete understanding of turbulence modulation. In this work, we present a full analysis of the turbulent kinetic energy (TKE) equation for a turbulent channel flow laden with a few fixed particles near the channel walls, in order to investigate how the wall generated turbulence interacts with the particles and how, as a result, the global turbulence statistics are modified. All terms in the budget equations of total and component-wise TKEs are explicitly computed using the data from direct numerical simulations. Particles are found to modify turbulence by two competing mechanisms: the reduction of the intrinsic turbulence production associated with a reduced mean shear due to the resistance imposed by solid particles (the first mechanism), and an additional TKE production mechanism by displacing incoming fluid (the second mechanism). The distribution of TKE in the wall-normal direction is also made more homogeneous due to the significantly enhanced pressure transport of TKE. Finally, the budget analysis of component-wise TKE reveals an enhanced inter-component TKE transfer due to the presence of particles, which leads to a more isotropic distribution of TKE among three velocity components.
The uncertainty and information asymmetry that surround initial public offering firms (IPOs) often introduce difficulties for potential investors to discern organizational value, thereby leading to ‘underpricing’. Using the signaling theory, we investigate the role of organizational reputation in the underpricing of IPOs. We analyze 463 initial public offerings in China from the period of 2010 to 2016 and find that being known for quality and generalized favorability dimensions of reputation are negatively related with underpricing on the first day of trading. In addition, we find that the negative effects of organizational reputation on underpricing are mediated by investor attention.
Schistosomiasis is an inflammatory disease that occurs when schistosome species eggs are deposited in the liver, resulting in fibrosis and portal hypertension. Schistosomes can interact with host inflammasomes to elicit host immune responses, leading to mitochondrial damage, generation of high levels of reactive oxygen species (ROS) and activation of apoptosis during inflammation. This study aims to examine whether ROS and NF-κB (p65) expression elicited other types of inflammasome activation in Schistosoma mansoni-infected mouse livers. We examine the relationship between inflammasome activation, mitochondrial damage and ROS production in mouse livers infected with S. mansoni. We demonstrate a significant release of ROS and superoxides and increased NF-κB (p65) in S. mansoni-infected mouse livers. Moreover, activation of the NLRP3 and AIM2 inflammasomes was triggered by S. mansoni infection. Stimulation of HuH-7 hepatocellular carcinoma cells with soluble egg antigen induced activation of the AIM2 inflammasome pathway. In this study, we demonstrate that S. mansoni infection promotes both NLRP3 and AIM2 inflammasome activation.
Understanding the two-way interactions between finite-size solid particles and a wall-bounded turbulent flow is crucial in a variety of natural and engineering applications. Previous experimental measurements and particle-resolved direct numerical simulations revealed some interesting phenomena related to particle distribution and turbulence modulation, but their in-depth analyses are largely missing. In this study, turbulent channel flows laden with neutrally buoyant finite-size spherical particles are simulated using the lattice Boltzmann method. Two particle sizes are considered, with diameters equal to 14.45 and 28.9 wall units. To understand the roles played by the particle rotation, two additional simulations with the same particle sizes but no particle rotation are also presented for comparison. Particles of both sizes are found to form clusters. Under the Stokes lubrication corrections, small particles are found to have a stronger preference to form clusters, and their clusters orientate more in the streamwise direction. As a result, small particles reduce the mean flow velocity less than large particles. Particles are also found to result in a more homogeneous distribution of turbulent kinetic energy (TKE) in the wall-normal direction, as well as a more isotropic distribution of TKE among different spatial directions. To understand these turbulence modulation phenomena, we analyse in detail the total and component-wise volume-averaged budget equations of TKE with the simulation data. This budget analysis reveals several mechanisms through which the particles modulate local and global TKE in the particle-laden turbulent channel flow.