We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The rocky shores of the north-east Atlantic have been long studied. Our focus is from Gibraltar to Norway plus the Azores and Iceland. Phylogeographic processes shape biogeographic patterns of biodiversity. Long-term and broadscale studies have shown the responses of biota to past climate fluctuations and more recent anthropogenic climate change. Inter- and intra-specific species interactions along sharp local environmental gradients shape distributions and community structure and hence ecosystem functioning. Shifts in domination by fucoids in shelter to barnacles/mussels in exposure are mediated by grazing by patellid limpets. Further south fucoids become increasingly rare, with species disappearing or restricted to estuarine refuges, caused by greater desiccation and grazing pressure. Mesoscale processes influence bottom-up nutrient forcing and larval supply, hence affecting species abundance and distribution, and can be proximate factors setting range edges (e.g., the English Channel, the Iberian Peninsula). Impacts of invasive non-native species are reviewed. Knowledge gaps such as the work on rockpools and host–parasite dynamics are also outlined.
Intertidal biofilms are a diverse mixture of bacteria, algae as well as sporelings of macroalgae embedded in a polysaccharid matrix. As the primary colonisers of newly formed surfaces, biofilms undergo a succession of different microbe assemblage until the mature state is reached. A biofilm can act as primary producers and as such recycle nutrients in a habitat. It will influence macrobiota by providing a food source or sending out cues to settlers. Biofilms themselves will be controlled by these settlers. This interaction between bottom-up and top-down plays a crucial part for the functioning of the rocky shore ecosystems. However, the diversity of biolfilms as well as it nature to react quickly to environmental changes makes identification and quantification of the individual compounds a difficult task. Subsequently, the understanding of biofilms in general and intertidal, rocky shore microbe assemblages has always tied to techniques and methods available at the time of study. This chapter focusses on the techniques that have greatly contributed to increasing knowledge of biofilms and discusses their findings. Nonetheless, newly developed methods promise to further this knowledge of the ecological role of biofilms on rocky coastlines.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.