A novel process for Boron doping of ultrananocrystalline diamond (UNCD) films, using thermal diffusion, is described. Hall measurements show an increase in carrier concentration from 1013 to 1020 cm−3. Ultraviolet Photoelectron Spectroscopy and x-ray Photoelectron Spectroscopy show a band gap of 4.4 eV, a work function of 5.1 eV and a Fermi level at 2.0 eV above the valence band. Boron atoms distribution through UNCD films, was measured by Secondary Ion Mass Spectrometry, revealing Boron atoms diffusivity of about 10−14 cm2/s. Raman spectroscopy and x-ray Diffraction analysis revealed that UNCD films did not suffer graphitization nor structural damage during annealing.