We extend a result of M. Heins by showing that for any sequence of points $(z_n)$ in the unit disk ${\Bbb D}$ tending to the boundary, there is a Blaschke product $B$ which is universal for noneuclidian translates in the sense that the set $\{B((z\,{+}\,z_n)/(1\,{+}\,\overline{z}_nz))\,{:} n\,{\in}\,{\Bbb N}\}$ is locally uniformly dense in the set of all holomorphic functions bounded by one on ${\Bbb D}$. From this, we conclude that for every countable set ${\sp L}$ of hyperbolic/parabolic automorphisms of the unit disk there exists a Blaschke product which is a common cyclic vector in $H^2$ for the composition operators associated with the elements in ${\sp L}$. These results are obtained by transferring the associated approximation problems to interpolation problems on the corona of $H^\infty$.