Uranium-series methods were used to date and evaluate pedogenic CaCO3 genesis in the Pinacate volcanic field, northwestern Sonora, Mexico. Soils are developed in eolian deposits on lava flows. 230Th/234U dates of pedogenic carbonate are mininum soil ages because of (1) the time needed to yield clasts from flows and to accrete enough carbonate to sample, (2) subsequent additions of uranium, and (3) continued solution and reprecipitation of carbonate rinds. K-Ar dates of basalt flows are maximum soil ages. Maximum and minimum rates of CaCO3 accumulation are calculated from the Th/U dates and K-Ar dates, respectively. The mean maximum rate is 0.13 g CaCO3/cm2/1000 yr and the mean minimum rate is 0.05 g CaCO3/cm2/1000 yr. Least-squares regressions of pedogenic carbonate and clay content and of Th/U ages against K-Ar ages suggest additions to soils from atmospheric sources throughout the late Quaternary. Morphology of pedogenic carbonate and laboratory data for soluble salts indicate that the climate of the Pinacate has not changed significantly during the past 150,000 yr. Soil variability is influenced by proximity of the eolian source. Near the periphery of the Pinacate, carbonate and clay are evenly distributed throughout soil profiles. Within the volcanic field, carbonate and clay are concentrated in soil horizons, suggesting that additions from atmospheric sources are slow enough to allow translocation.