The effects of different geometries of two-dimensional (2-D) roughness elements in a zero pressure gradient (ZPG) turbulent boundary layer (TBL) on turbulence statistics and drag coefficient are assessed using single hot-wire anemometry. Three kinds of 2-D roughness are used: (i) circular rods with two different heights, $k= 1.6$ and 2.4 mm, and five different streamwise spacing of $s_{x}= 6k$ to $24k$, (ii) three-dimensional (3-D) printed triangular ribs with heights of $k= 1.6$ mm and spacing of $s_{x}= 8k$ and (iii) computerized numerical control (CNC) machined sinewave surfaces with two different heights, $k= 1.6$ and 2.4 mm, and spacing of $s_{x}= 8k$. These roughnesses cover a wide range of ratios of the boundary layer thickness to the roughness height ($23 < \delta /k < 41$), where $\delta$ is the boundary layer thickness. All roughnesses cause a downward shift on the wall-unit normalised streamwise mean velocity profile when compared with the smooth wall profiles agreeing with the literature, with a maximum downward shift observed for $s_{x}= 8k$. In the fully rough regime, the drag coefficient becomes independent of the Reynolds number. Changing the roughness height while maintaining the same spacing ratio $s_{x}/k$ exhibits little influence on the drag coefficient in the fully rough regime. On the other hand, the effective slope $(ES)$ and the height skewness $(k_{sk})$ appear to be major surface roughness parameters that affect the drag coefficient. These parameters are used in a new expression for $k_{s}$, the equivalent sand grain roughness, developed for 2-D uniformly distributed roughness in the fully rough regime.