We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cognitive-behavior therapy (CBT) is a well-established first-line intervention for anxiety-related disorders, including specific phobia, social anxiety disorder, panic disorder/agoraphobia, generalized anxiety disorder, obsessive-compulsive disorder, and posttraumatic stress disorder. Several neural predictors of CBT outcome for anxiety-related disorders have been proposed, but previous results are inconsistent.
Methods
We conducted a systematic review and meta-analysis of task-based functional magnetic resonance imaging (fMRI) studies investigating whole-brain predictors of CBT outcome in anxiety-related disorders (17 studies, n = 442).
Results
Across different tasks, we observed that brain response in a network of regions involved in salience and interoception processing, encompassing fronto-insular (the right inferior frontal gyrus-anterior insular cortex) and fronto-limbic (the dorsomedial prefrontal cortex-dorsal anterior cingulate cortex) cortices was strongly associated with a positive CBT outcome.
Conclusions
Our results suggest that there are robust neural predictors of CBT outcome in anxiety-related disorders that may eventually lead (probably in combination with other data) to develop personalized approaches for the treatment of these mental disorders.
Establishing neurobiological markers of posttraumatic stress disorder (PTSD) is essential to aid in diagnosis and treatment development. Fear processing deficits are central to PTSD, and their neural signatures may be used as such markers.
Methods
Here, we conducted a meta-analysis of seven Pavlovian fear conditioning fMRI studies comparing 156 patients with PTSD and 148 trauma-exposed healthy controls (TEHC) using seed-based d-mapping, to contrast neural correlates of experimental phases, namely conditioning, extinction learning, and extinction recall.
Results
Patients with PTSD, as compared to TEHCs, exhibited increased activation in the anterior hippocampus (extending to the amygdala) and medial prefrontal cortex during conditioning; in the anterior hippocampus-amygdala regions during extinction learning; and in the anterior hippocampus-amygdala and medial prefrontal areas during extinction recall. Yet, patients with PTSD have shown an overall decreased activation in the thalamus during all phases in this meta-analysis.
Conclusion
Findings from this metanalysis suggest that PTSD is characterized by increased activation in areas related to salience and threat, and lower activation in the thalamus, a key relay hub between subcortical areas. If replicated, these fear network alterations may serve as objective diagnostic markers for PTSD, and potential targets for novel treatment development, including pharmacological and brain stimulation interventions. Future longitudinal studies are needed to examine whether these observed network alteration in PTSD are the cause or the consequence of PTSD.
A multitude of risk/protective factors for anxiety and obsessive-compulsive disorders have been proposed. We conducted an umbrella review to summarize the evidence of the associations between risk/protective factors and each of the following disorders: specific phobia, social anxiety disorder, generalized anxiety disorder, panic disorder, and obsessive-compulsive disorder, and to assess the strength of this evidence whilst controlling for several biases.
Methods
Publication databases were searched for systematic reviews and meta-analyses examining associations between potential risk/protective factors and each of the disorders investigated. The evidence of the association between each factor and disorder was graded into convincing, highly suggestive, suggestive, weak, or non-significant according to a standardized classification based on: number of cases (>1000), random-effects p-values, 95% prediction intervals, confidence interval of the largest study, heterogeneity between studies, study effects, and excess of significance.
Results
Nineteen systematic reviews and meta-analyses were included, corresponding to 216 individual studies covering 427 potential risk/protective factors. Only one factor association (early physical trauma as a risk factor for social anxiety disorder, OR 2.59, 95% CI 2.17–3.1) met all the criteria for convincing evidence. When excluding the requirement for more than 1000 cases, five factor associations met the other criteria for convincing evidence and 22 met the remaining criteria for highly suggestive evidence.
Conclusions
Although the amount and quality of the evidence for most risk/protective factors for anxiety and obsessive-compulsive disorders is limited, a number of factors significantly increase the risk for these disorders, may have potential prognostic ability and inform prevention.
Preliminary evidence suggests that hoarding disorder (HD) and obsessive-compulsive disorder (OCD) may show distinct patterns of brain activation during executive performance, although results have been inconclusive regarding the specific neural correlates of their differential executive dysfunction. In the current study, we aim to evaluate differences in brain activation between patients with HD, OCD and healthy controls (HCs) during response inhibition, response switching and error processing.
Methods
We assessed 17 patients with HD, 18 patients with OCD and 19 HCs. Executive processing was assessed inside a magnetic resonance scanner by means of two variants of a cognitive control protocol (i.e. stop- and switch-signal tasks), which allowed for the assessment of the aforementioned executive domains.
Results
OCD patients performed similar to the HCs, differing only in the number of successful go trials in the switch-signal task. However, they showed an anomalous hyperactivation of the right rostral anterior cingulate cortex during error processing in the switch-signal task. Conversely, HD patients performed worse than OCD and HC participants in both tasks, showing an impulsive-like pattern of response (i.e. shorter reaction time and more commission errors). They also exhibited hyperactivation of the right lateral orbitofrontal cortex during successful response switching and abnormal deactivation of frontal regions during error processing in both tasks.
Conclusions
Our results support that patients with HD and OCD present dissimilar cognitive profiles, supported by distinct neural mechanisms. Specifically, while alterations in HD resemble an impulsive pattern of response, patients with OCD present increased error processing during response conflict protocols.