We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The spatio-temporal variation of leaf chlorophyll content is an important crop phenotypic trait that is of great significance for evaluating crop productivity. This study used a soil-plant analysis development (SPAD) chlorophyll meter for non-destructive monitoring of leaf chlorophyll dynamics to characterize the patterns of spatio-temporal variation in the nutritional status of maize (Zea mays L.) leaves under three nitrogen treatments in two cultivars. The results showed that nitrogen levels could affect the maximum leaf SPAD reading (SPADmax) and the duration of high SPAD reading. A rational model was used to measure the changes in SPAD readings over time in single leaves. This model was suitable for predicting the dynamics of the nutrient status for each leaf position under different nitrogen treatments, and model parameter values were position dependent. SPADmax at each leaf decreased with the reduction of nitrogen supply. Leaves at different positions in both cultivars responded differently to higher nitrogen rates. Lower leaves (8th–10th positions) were more sensitive than the other leaves in response to nitrogen. Monitoring the SPAD reading dynamic of lower leaves could accurately characterize and assess the nitrogen supply in plants. The lower leaves in nitrogen-deficient plants had a shorter duration of high SPAD readings compared to nitrogen-sufficient plants; this physiological mechanism should be studied further. In summary, the spatio-temporal variation of plant nitrogen status in maize was analysed to determine critical leaf positions for potentially assisting in the identification of appropriate agronomic management practices, such as the adjustment of nitrogen rates in late fertilization.
The extent of the reduction of maize (Zea mays L.) kernel moisture content through drying is closely related to field temperature (or accumulated temperature; AT) following maturation. In 2017 and 2018, we selected eight maize hybrids that are widely planted in Northeastern China to construct kernel drying prediction models for each hybrid based on kernel drying dynamics. In the traditional harvest scenario using the optimal sowing date (OSD), maize kernels underwent drying from 4th September to 5th October, with variation coefficients of 1.0–1.9. However, with a latest sowing date (LSD), drying occurred from 14th September to 31st October, with variation coefficients of 1.3–3.0. In the changed harvest scenario, the drying time of maize sown on the OSD condition was from 12th September to 9th November with variation coefficients of 1.3–3.0, while maize sown on the LSD had drying dates of 26th September to 28th October with variation coefficients of 1.5–3.6. In the future harvest scenario, the Fengken 139 (FK139) and Jingnongke 728 (JNK728) hybrids finished drying on 20th October and 8th November, respectively, when sown on the OSD and had variation coefficients of 2.7–2.8. Therefore, the maize kernel drying time was gradually delayed and was associated with an increased demand for AT ⩾ 0°C late in the growing season. Furthermore, we observed variation among different growing seasons likely due to differences in weather patterns, and that sowing dates impact variations in drying times to a greater extent than harvest scenarios.
The characteristic traits of maize (Zea mays L.) leaves affect light interception and photosynthesis. Measurement or estimation of individual leaf area has been described using discontinuous equations or bell-shaped functions. However, new maize hybrids show different canopy architecture, such as leaf angle in modern maize which is more upright and ear leaf and adjacent leaves which are longer than older hybrids. The original equations and their parameters, which have been used for older maize hybrids and grown at low plant densities, will not accurately represent modern hybrids. Therefore, the aim of this paper was to develop a new empirical equation that captures vertical leaf distribution. To characterize the vertical leaf profile, we conducted a field experiment in Jilin province, Northeast China from 2015 to 2018. Our new equation for the vertical distribution of leaf profile describes leaf length, width or leaf area as a function of leaf rank, using parameters for the maximum value for leaf length, width or area, the leaf rank at which the maximum value is obtained, and the width of the curve. It thus involves one parameter less than the previously used equations. By analysing the characteristics of this new equation, we identified four key leaf ranks (4, 8, 14 and 20) for which leaf parameter values need to be quantified in order to have a good estimation of leaf length, width and area. Together, the method of leaf area estimation proposed here adds versatility for use in modern maize hybrids and simplifies the field measurements by using the four key leaf ranks to estimate vertical leaf distribution in maize canopy instead of all leaf ranks.
The microbiota–gut–brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients.
Methods
We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD.
Results
The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890.
Conclusions
The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.
Geochronological, major and trace element, and Sr–Nd–Hf isotopic data are reported for the monzonitic rocks of the Fushan pluton in the Taihang Mountains, central North China Craton, in order to investigate their sources, petrogenesis and tectonic implications. Zircon U–Pb dating results reveal that the Fushan pluton was emplaced during the Early Cretaceous (∼126–124 Ma). The monzonites and quartz monzonites are mainly characterized by calc-alkaline and magnesian features and display light rare earth element (LREE) enrichment and flat heavy REE (HREE) patterns with slightly positive Eu anomalies. They have similar whole-rock initial 87Sr/86Sr ratios (0.70653–0.70819), εNd(t) values (−13.6 to −18.6) and zircon εHf(t) values (−21.8 to −17.3). The primary magma of the Fushan pluton was derived from the partial melting of a spinel-facies amphibole-bearing ancient enriched lithospheric mantle. The monzonitic rocks also have high Ba–Sr and low Y and Yb contents, with high Sr/Y and La/Yb ratios. These geochemical features of monzonitic rocks are not only inherited from the magma source but also significantly enhanced by crystal fractionation during magmatic evolution; e.g. hornblende fractionation increased the Ba–Sr concentrations and Sr/Y ratios. During the Early Cretaceous, the slab sinking and roll-back of the Palaeo-Pacific Plate could have created an ancient big mantle wedge beneath East Asia and induced a lithospheric extensional process in the central North China Craton within an intracontinental setting.
Good canopy structure is essential for optimal maize (Zea mays L.) production. However, creating appropriate maize canopy structure can be difficult, because the characteristics of individual plants are altered by changes in plant age, density and interactions with neighbouring plants. The objective of the current study was to find a reliable method for building good maize canopy structure by analysing changes in canopy structure, light distribution and grain yield (GY). A modern maize cultivar (ZhengDan958) was planted at 12 densities ranging from 1.5 to 18 plants/m2 at two field locations in Xinjiang, China. At the silking stage (R1), plant and ear height increased with plant density as well as leaf area index (LAI), whereas leaf area per plant decreased logarithmically. The fraction of light intercepted by the plant (F) increased with increasing plant density, but the light extinction coefficient (K) decreased linearly from 0.61 to 0.39. Taking the optimum value of F (95%) as an example, and using measured values of K for each plant density at R1 and the equation from Beer's law, the corresponding (theoretical) LAI for each plant density was calculated and optimum plant density (9.72 plants/m2) obtained by calculating the difference between theoretical LAIs and actual observations. Further analysis showed that plant density ranging from 10.64 to 11.55 plants/m2 yielded a stable GY range. Therefore, taking into account the persistence time for maximum LAI, the plant density required to obtain an ideal GY maize canopy structure should be increased by 10–18% from 9.72 plants/m2.
Suboptimal vitamin B2 status is encountered globally. Riboflavin deficiency depresses growth and results in a fatty liver. The underlying mechanisms remain to be established and an overview of molecular alterations is lacking. We investigated hepatic proteome changes induced by riboflavin deficiency to explain its effects on growth and hepatic lipid metabolism. In all, 360 1-d-old Pekin ducks were divided into three groups of 120 birds each, with twelve replicates and ten birds per replicate. For 21 d, the ducks were fed ad libitum a control diet (CAL), a riboflavin-deficient diet (RD) or were pair-fed with the control diet to the mean daily intake of the RD group (CPF). When comparing RD with CAL and CPF, growth depression, liver enlargement, liver lipid accumulation and enhanced liver SFA (C6 : 0, C12 : 0, C16 : 0, C18 : 0) were observed. In RD, thirty-two proteins were enhanced and thirty-one diminished (>1·5-fold) compared with CAL and CPF. Selected proteins were confirmed by Western blotting. The diminished proteins are mainly involved in fatty acid β-oxidation and the mitochondrial electron transport chain (ETC), whereas the enhanced proteins are mainly involved in TAG and cholesterol biosynthesis. RD causes liver lipid accumulation and growth depression probably by impairing fatty acid β-oxidation and ETC. These findings contribute to our understanding of the mechanisms of liver lipid metabolic disorders due to RD.
There is an ongoing relationship between host plants and herbivores. The nutrient substances and secondary compounds found in the host plant can not only impact the growth and development process of herbivores, but, more importantly, may also affect their survival and reproductive fitness. Vitellogenesis is the core process of reproductive regulation and is generally considered as a reliable indicator for evaluating the degree of ovarian development in females. Vitellogenin (Vg) plays a critical role in the synthesis and secretion of yolk protein. In this study, the full-length cDNA of the Vg gene in an alien invasive species, the nipa palm hispid beetle Octodonta nipae Maulik (Coleoptera: Chrysomelidae) (OnVg) was cloned and, the effect of host plant on the OnVg expression level and ovarian development was investigated. The results revealed that the OnVg was highly and exclusively expressed in adult females, but barely detectable in larvae, pupae and adult males. The relative expression level of OnVg and egg hatchability were much higher in females fed on Phoenix canariensis (their preferred host) than those fed on Phoenix roebelenii. A positive correlation relationship between OnVg expression and egg hatchability was also detected. Additionally, the anatomy of the female reproductive system showed that the ovaries of individuals fed on P. canariensis were considerably more developed than in females fed on P. roebelenii. The results may be applicable to many pest management situations through reproductive disturbance by alternating host plant species or varieties or by reproductive regulation through vitellogenesis mediated by specific endocrine hormones.
We present experimental evidence that a minute amount of polymer additives can significantly enhance heat transport in the bulk region of turbulent thermal convection. The effects of polymer additives are found to be the enhancement of coherent heat fluxes and suppression of incoherent heat fluxes. The enhanced heat transport is associated with the increased coherency of thermal plumes, as a result of the suppression of small-scale turbulent fluctuations by polymers. The incoherent heat flux, arising from turbulent background fluctuations, makes no net contribution to heat transport. The fact that polymer additives can increase the coherency of thermal plumes is supported by the measurements of a number of local quantities, such as the extracted plume amplitude and width, the velocity autocorrelation functions and the velocity–temperature cross-correlation coefficient. The results from local measurements also suggest the existence of a threshold value for the polymer concentration, only above which significant modification of the plume coherent properties and enhancement of the local heat flux can be observed. Estimation of the plume emission rate suggests a stabilization of the thermal boundary layer by polymer additives.
In current transparent Si based photovoltaic (PV) module fabrication, green or infrared laser is the most common used band frequency to wipe off the silicon and back contact layer in perpendicular direction of cells. However, this method would result in more power loss than calculation value due to the side effects during the process such as constructional damage of module and shunt effect. A new method is presented here which focus on wiping off more silicon layer by employing green pulsed laser(532 nm wavelength) along the parallel direction of Pattern2, and it shows higher efficiency and more attractive appearance.
Charged particle diagnostics is one of the required techniques for implosion areal density diagnostics at the SG-III facility. Several proton spectrometers are under development, and some preliminary areal density diagnostics have been carried out. The response of the key detector, CR39, to charged particles was investigated in detail. A new track profile simulation code based on a semi-empirical model was developed. The energy response of the CR39 detector was calibrated with the accelerator protons and alphas from a 241Am source. A proton spectrometer based on the filtered CR39 detector was developed, and D–D primary proton measurements were implemented. A step range filter spectrometer was developed, and preliminary areal density diagnostics was carried out. A wedged range filter spectrometer array made of Si with a higher resolution was designed and developed at the SG-III facility. A particle response simulation code by the Monte Carlo method and a spectra unfolding code were developed. The capability was evaluated in detail by simulations.
The role of oxidative stress in skeletal health is unclear. The present study investigated whether a high dietary intake of antioxidant nutrients (vitamins C and E, β-carotene, animal-derived vitamin A, retinol equivalents, Zn and Se) is associated with a reduced risk of hip fracture in elderly Chinese. This 1:1 matched case–control study involved 726 elderly Chinese with hip fracture and 726 control subjects, recruited between June 2009 and May 2013. Face-to-face interviews were conducted to determine habitual dietary intakes of the above-mentioned seven nutrients based on a seventy-nine-item FFQ and information on various covariates, and an antioxidant score was calculated. After adjustment for potential covariates, dose-dependent inverse associations were observed between the dietary intake of vitamin C, vitamin E, β-carotene, and Se and antioxidant score and the risk of hip fracture (P for trend ≤ 0·005). The OR of hip fracture for the highest (v. lowest) quartile of intake were 0·39 (95 % CI 0·28, 0·56) for vitamin C, 0·23 (95 % CI 0·16, 0·33) for vitamin E, 0·51 (95 % CI 0·36, 0·73) for β-carotene, 0·43 (95 % CI 0·26, 0·70) for Se and 0·24 (95 % CI 0·17, 0·36) for the antioxidant score. A moderate-to-high dietary intake of retinol equivalents in quartiles 2–4 (v. 1) was found to be associated with a lower risk of hip fracture (OR range: 0·51–0·63, P< 0·05). No significant association was observed between dietary Zn or animal-derived vitamin A intake and hip fracture risk (P for trend >0·20). In conclusion, a higher dietary intake of vitamins C and E, β-carotene, and Se and a moderate-to-high dietary intake of retinol equivalents are associated with a lower risk of hip fracture in elderly Chinese.
An ion beam has the unique feature of being able to deposit its main energy inside a human body to kill cancer cells or inside material. However, conventional ion accelerators tend to be huge in size and cost. In this paper, a future intense-laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, and the ion particle energy control. In the study, each component is designed to control the ion beam quality by particle simulations. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical-density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser–target interaction.
Two arguments about theory and comparative literature have been influential in recent years. on the one hand, there has been much talk of the “death of theory,” or the “end of theory,” or “post-theory” in the humanities. On the other hand, there is a “crisis” of comparative literature, perhaps a perennial condition, if it hasn't culminated in the “death of a discipline.” Under these circumstances, the question “What does the comparative do for theory?” assumes a poignant significance, which depends on what is meant by “comparative” and “theory.” To answer this question, I explore an epistemological category I call “comparativity”—that is, metacomparison or the theoretical potential of comparison—in contrast to the usual term “comparison.” If there is a crisis of comparative literature, it may be because we have moved too far from thinking comparativity as a way of knowing and engaging the world. Epistemology does not precede ontology, or ethics, or politics, but it is deeply involved in all of them. In this paper, I will argue for comparativity as at once an epistemological and metaepistemological mode of inquiry. Comparativity cannot be displaced or replaced by another disciplinary way of thinking, for comparativity is a trans- and metadisciplinary thought process, which by virtue of its self-critical reflexivity applies to all humanistic studies. My focus is therefore on the theoretical implications of comparativity.
The long-lived radioisotope 59Ni is of interest in various research fields including neutron dosimetry, radioactive waste management, and astrophysics. In order to achieve the sensitivity required for such applications, the technique of accelerator mass spectrometry (AMS) 59Ni measurement has been developed at the AMS facility at China Institute of Atomic Energy (CIAE). Based on the AE-Q3D detection system in the CIAE AMS facility, the interference in 59Ni counting from the isobar 59Co has been reduced by a factor of 8 × 106. A series of laboratory reference samples and a blank sample were measured to check the performance of 59Ni measurement. A detection sensitivity of about 5 × 10−13 (59Ni/Ni) has been obtained.
The present study investigated the effects of xanthophyll supplementation on production performance, antioxidant capacity (measured by glutathione peroxidase, superoxide dismutase (SOD), catalase, total antioxidant capacity (T-AOC), and reduced glutathione:oxidised glutathione ratio (GSH:GSSG)) and lipid peroxidation (measured by malondialdehyde (MDA)) in breeding hens and chicks. In Expt 1, 432 hens were fed diets supplemented with 0 (control group), 20 or 40 mg xanthophyll/kg diet. Blood samples were taken at 7, 14, 21, 28 and 35 d of the trial. Liver and jejunal mucosa were sampled at 35 d. Both xanthophyll groups improved serum SOD at 21 and 28 d, serum T-AOC at 21 d and liver T-AOC, and serum GSH:GSSG at 21, 28 and 35 d and liver GSH:GSSG. Xanthophylls also decreased serum MDA at 21 d in hens. Expt 2 was a 2 × 2 factorial design. Male chicks hatched from 0 or 40 mg in ovo xanthophyll/kg diet of hens were fed a diet containing either 0 or 40 mg xanthophyll/kg diet. Liver samples were collected at 0, 7, 14 and 21 d after hatching. Blood samples were also collected at 21 d. In ovo-deposited xanthophylls increased antioxidant capacity and decreased MDA in the liver mainly within 1 week after hatching. Maternal effects gradually vanished during 1–2 weeks after hatching. Dietary xanthophylls increased antioxidant capacity and decreased MDA in the liver and serum mainly from 2 weeks onwards. Data suggested that xanthophyll supplementation enhanced antioxidant capacity and reduced lipid peroxidation in different tissues of hens and chicks.
Cu–In–Ga precursor thin films were deposited onto soda lime glass by magnetron cosputtering CuIn and CuGa alloy targets. After that, Cu(In,Ga)Se2(CIGSe) absorbers were formed by selenizing those alloy precursors with Se vapor at 550 °C. The influence of the precursor temperature on the properties of CIGSe thin film was investigated. The results show that a lot of pinholes existed in the CIGSe thin film produced by selenizing the Cu–In–Ga alloy precursor, which was sputtering deposited at ambient temperature. After sputtering substrate temperature of 250 °C was applied, pinholes were avoided. The surface roughness of Cu–In–Ga precursor increased with the increase of sputtering substrate temperature. Due to the volume expansion of selenization process, even the precursor with high surface roughness could be converted to smooth and compact CIGSe thin film.