We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The interaction of InN epitaxial films grown by r.f. plasma assisted molecular beam epitaxy with atomic hydrogen and nitrogen, produced by remote r.f. H2 and N2 plasmas, is investigated. InN strongly reacts with both atomic hydrogen and nitrogen yielding depletion of nitrogen and concurrent formation of In clusters. The impact of hydrogen treatments on the optical properties of InN is assessed using photoluminescence (PL). It is found that hydrogen suppresses the intense PL band peaked at approximately 0.7eV for the as-grown InN epitaxial layers, and results in the appearance of a new PL band whose peak energy and intensity increase with H-dose. The effect of exposure to atomic hydrogen and nitrogen on electrical properties of InN is investigated using Hall effect measurements. Atomic force microscopy is also used for studying the morphological changes of InN upon interaction with atomic hydrogen and nitrogen.
Email your librarian or administrator to recommend adding this to your organisation's collection.