We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The field of female fertility preservation is based on the ability to successfully cryopreserve ovarian tissue [1], and this can now be offered to a wide range of patients worldwide [2, 3]. Fragments of cryopreserved ovarian cortex can be thawed and autografted to an orthotopic or heterotopic site to restore fertility [4, 5]. The potential of this tissue to restore fertility would be greatly enhanced if immature oocytes contained within the tissue could be grown to mature stages within the laboratory and this would be particularly beneficial for prepubertal girls who currently have fewer options to preserve and restore their fertility than adult women [2, 3].
Cryopreserved tissue contains the most immature stage of oocyte within primordial follicles and the main aim of culturing this tissue is to support in vitro gametogenesis/growth (IVG) to develop immature oocytes entirely in vitro [6]. If this methodology could be demonstrated to be safe, it would maximize the potential of cryopreserved ovarian tissue and have many clinical applications [2, 3].