Knowledge of the mechanical properties of interlevel dielectric films and their impact on sub-micron interconnect reliability is becoming more and more important as critical dimensions in ULSI circuits are scaled down. For example, lateral aluminum (Al) extrusions into spaces between metal lines, which become a more of a concern as the pitches shrink, appear to depend partially on properties of SiO2 underlayers. In this paper, the mechanical properties of several common interlevel dielectric SiO2 films such as undoped silica glass using a silane (SiH4) precursor, undoped silica glass using a tetraethylorthosilicate (TEOS) precursor, phosphosilicate glass (PSG) deposited by plasma-enhanced chemical vapor deposition (PECVD) and borophosphosilicate glass (BPSG) deposited by sub-atmosphere chemical vapor deposition (SACVD) were studied. Among the four common interlevel layers, BPSG exhibits the smallest modulus (E), hardness (H) and the highest the coefficients of thermal expansion (CTE). BPSG again has the lowest as-deposited compressive stress and the lowest local Si-O-Si strain before annealing. Stress interactions between the various SiO2 underlayers and the Al metal film are further investigated. The impact of dielectric elastic properties on interconnect reliability during thermal cycles is proposed.