We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
My first academic job in 1962 involved teaching a course on History of Civilization. We had a text that essentially involved Western Civilization with chapters on India, China, and Japan interspersed. Two years later, when I returned from my doctoral thesis research in Africa, my thesis supervisor, William Halperin, recommended me for a ten-week adult education group discussing William McNeill’s Rise of the West. I was stunned that in a history of Eurasia, McNeill devoted only five pages to Africa. The incorporation of Africa in world history has been slow. For many of us in that first generation to study African history in Europe and North America, the marginality of Africa in the study of history was sometimes what drew us to study it. (There were a small number of African-American historians who wrote about Africa, but they had little impact on history curricula outside the small world in which they operated.) As a graduate student, I did a field on the Expansion of Europe and was struck by the inferior quality of much that had been written about Africa, largely by missionaries and colonial administrators. Until the Foreign Area Fellowship Program sent me to the University of Wisconsin-Madison to “tool up” with Jan Vansina, I was oblivious to the work that scholars like Vansina, Oliver, and Curtin were doing. Once I began researching Africa, the excitement was that of creating a new field of historical research.
Diagnosing the evolution of laser-generated high energy density (HED) systems is fundamental to develop a correct understanding of the behavior of matter under extreme conditions. Talbot–Lau interferometry constitutes a promising tool, since it permits simultaneous single-shot X-ray radiography and phase-contrast imaging of dense plasmas. We present the results of an experiment at OMEGA EP that aims to probe the ablation front of a laser-irradiated foil using a Talbot–Lau X-ray interferometer. A polystyrene (CH) foil was irradiated by a laser of 133 J, 1 ns and probed with 8 keV laser-produced backlighter radiation from Cu foils driven by a short-pulse laser (153 J, 11 ps). The ablation front interferograms were processed in combination with a set of reference images obtained ex situ using phase-stepping. We managed to obtain attenuation and phase-shift images of a laser-irradiated foil for electron densities above ${10}^{22}\;{\mathrm{cm}}^{-3}$. These results showcase the capabilities of Talbot–Lau X-ray diagnostic methods to diagnose HED laser-generated plasmas through high-resolution imaging.
There is mixed evidence on increasing rates of psychiatric disorders and symptoms during the coronavirus disease 2019 (COVID-19) pandemic in 2020. We evaluated pandemic-related psychopathology and psychiatry diagnoses and their determinants in the Brazilian Longitudinal Study of Health (ELSA-Brasil) São Paulo Research Center.
Methods
Between pre-pandemic ELSA-Brasil assessments in 2008–2010 (wave-1), 2012–2014 (wave-2), 2016–2018 (wave-3) and three pandemic assessments in 2020 (COVID-19 waves in May–July, July–September, and October–December), rates of common psychiatric symptoms, and depressive, anxiety, and common mental disorders (CMDs) were compared using the Clinical Interview Scheduled-Revised (CIS-R) and the Depression Anxiety Stress Scale-21 (DASS-21). Multivariable generalized linear models, adjusted by age, gender, educational level, and ethnicity identified variables associated with an elevated risk for mental disorders.
Results
In 2117 participants (mean age 62.3 years, 58.2% females), rates of CMDs and depressive disorders did not significantly change over time, oscillating from 23.5% to 21.1%, and 3.3% to 2.8%, respectively; whereas rate of anxiety disorders significantly decreased (2008–2010: 13.8%; 2016–2018: 9.8%; 2020: 8%). There was a decrease along three wave-COVID assessments for depression [β = −0.37, 99.5% confidence interval (CI) −0.50 to −0.23], anxiety (β = −0.37, 99.5% CI −0.48 to −0.26), and stress (β = −0.48, 99.5% CI −0.64 to −0.33) symptoms (all ps < 0.001). Younger age, female sex, lower educational level, non-white ethnicity, and previous psychiatric disorders were associated with increased odds for psychiatric disorders, whereas self-evaluated good health and good quality of relationships with decreased risk.
Conclusion
No consistent evidence of pandemic-related worsening psychopathology in our cohort was found. Indeed, psychiatric symptoms slightly decreased along 2020. Risk factors representing socioeconomic disadvantages were associated with increased odds of psychiatric disorders.
Laser-induced forward transfer (LIFT) is a nozzle-free printing technology that can be used for two- and three-dimensional printing. In LIFT, a laser pulse creates an impulse inside a thin film of material that results in the formation of a liquid jet. We experimentally study LIFT of viscoplastic materials by visualizing the process of jetting with high-speed imaging. The shape of the jet depends on the laser energy, focal height, surface tension and material rheology. We theoretically identify the characteristic jetting velocity and how it depends on the control parameters, and define non-dimensional groups to classify the regimes of jetting. Based on the results, we propose the optimal conditions for printing with LIFT technology.
Very Long Baseline Interferometry (VLBI) at sub-millimeter waves has the potential to image the shadow of the black hole in the Galactic Center, Sagittarius A* (Sgr A*), and thereby test basic predictions of the theory of general relativity. We investigate the imaging prospects of a new Space VLBI mission concept. The setup consists of two satellites in polar or equatorial circular Medium-Earth Orbits with slightly different radii, resulting in a dense spiral-shaped uv-coverage with long baselines, allowing for extremely high-resolution and high-fidelity imaging of radio sources. We simulate observations of a general relativistic magnetohydrodynamics model of Sgr A* for this configuration with noise calculated from model system parameters. After gridding the uv-plane and averaging visibilities accumulated over multiple months of integration, images of Sgr A* with a resolution of up to 4 μ as could be reconstructed, allowing for stronger tests of general relativity and accretion models than with ground-based VLBI.
Excessive salt intake is a common feature of Western dietary patterns, and has been associated with important metabolic changes including cerebral redox state imbalance. Considering that little is known about the effect on progeny of excessive salt intake during pregnancy, the present study investigated the effect of a high-salt diet during pregnancy and lactation on mitochondrial parameters and the redox state of the brains of resulting offspring. Adult female Wistar rats were divided into two dietary groups (n 20 rats/group): control standard chow (0·675 % NaCl) or high-salt chow (7·2 % NaCl), received throughout pregnancy and for 7 d after delivery. On postnatal day 7, the pups were euthanised and their cerebellum, hypothalamus, hippocampus, prefrontal and parietal cortices were dissected. Maternal high-salt diet reduced cerebellar mitochondrial mass and membrane potential, promoted an increase in reactive oxygen species allied to superoxide dismutase activation and decreased offspring cerebellar nitric oxide levels. A significant increase in hypothalamic nitric oxide levels and mitochondrial superoxide in the hippocampus and prefrontal cortex was observed in the maternal high-salt group. Antioxidant enzymes were differentially modulated by oxidant increases in each brain area studied. Taken together, our results suggest that a maternal high-salt diet during pregnancy and lactation programmes the brain metabolism of offspring, favouring impaired mitochondrial function and promoting an oxidative environment; this highlights the adverse effect of high-salt intake in the health state of the offspring.
When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower surface temperatures, where the drop is in direct contact with the solid surface. A commonly made assumption is that this solid surface is isothermal, which is at least questionable for materials of low thermal conductivity, resulting in an overestimation of the surface temperature and heat transfer for such systems. Here we aim to obtain more quantitative insight into how surface cooling affects the Leidenfrost effect. We develop a technique based on Mach–Zehnder interferometry to investigate the surface cooling of a quartz plate by a Leidenfrost drop. The three-dimensional plate temperature field is reconstructed from interferometric data by an Abel inversion method using a basis function expansion of the underlying temperature field. By this method we are able to quantitatively measure the local cooling inside the plate, which can be as strong as 80 K. We develop a numerical model which shows good agreement with experiments and enables extending the analysis beyond the experimental parameter space. Based on the numerical and experimental results we quantify the effect of surface cooling on the Leidenfrost phenomenon. By focusing on the role of the solid surface we provide new insights into the Leidenfrost effect and demonstrate how to adjust current models to account for non-isothermal solids and use previously obtained isothermal scaling laws for the neck thickness and evaporation rate.
Recent evidence suggests that vitamin D deficiency is associated with CVD, impaired kidney function and proteinuria. To date, no study has evaluated these associations in renal transplant recipients (RTR) adjusting for body adiposity assessed by a ‘gold standard’ method. This study aimed to evaluate the vitamin D status and its association with body adiposity, CVD risk factors, estimated glomerular filtration rate (eGFR) and proteinuria in RTR, living in Rio de Janeiro, Brazil (a low-latitude city (22°54'10"S)), taking into account body adiposity evaluated by dual-energy X-ray absorptiometry (DXA). This cross-sectional study included 195 RTR (114 men) aged 47·6 (sd 11·2) years. Nutritional evaluation included anthropometry and DXA. Risk factors for CVD were hypertension, diabetes mellitus, dyslipidaemia and the metabolic syndrome. eGFR was evaluated using the Chronic Kidney Disease Epidemiology Collaboration equation. Serum 25-hydroxyvitamin D (25(OH)D) concentration was used to define vitamin D status as follows: 10 % (n 19) had vitamin D deficiency (<16 ng/ml), 43 % (n 85) had insufficiency (16–30 ng/ml) and 47 % (n 91) had sufficiency (>30 ng/ml). Percentage of body fat (DXA) was significantly associated with vitamin D deficiency independently of age, sex and eGFR. Lower 25(OH)D was associated with higher odds of the metabolic syndrome and dyslipidaemia after adjustment for age, sex and eGFR, but not after additional adjustment for body fat. Hypertension and diabetes were not related to 25(OH)D. Lower serum 25(OH)D was associated with increasing proteinuria and decreasing eGFR even after adjustments for age, sex and percentage of body fat. This study suggests that in RTR of a low-latitude city hypovitaminosis D is common, and is associated with excessive body fat, decreased eGFR and increased proteinuria.
Field experiments were conducted at five sites in Nebraska in 2000 and 2001 to determine the effect of planting depth and isoxaflutole rate on the response of an isoxaflutole-sensitive corn hybrid, ‘Pioneer 33-G’ across variable environments. Corn was planted at depths of 2.5 and 5.0 cm, and isoxaflutole was applied PRE at the recommended (1×) and twice the recommended (2×) rate. The effects of planting depth and herbicide rate on injury varied considerably across site–years. When injury was evident, it was generally greater at the high rate of isoxaflutole (2×) and at the shallow planting depth (2.5 cm). In most site–years, corn recovered from early season injury, and yields were not reduced, except at Scottsbluff, NE, and North Platte, NE, where soils were lower in organic matter and higher in pH. Isoxaflutole rates should be carefully selected for soils with low organic matter and high pH.
Field experiments were conducted to evaluate the effect of five spray-nozzle types and three drift-control adjuvants (DCA) on glyphosate spray drift. The extended-range (XR) flat-fan nozzle at 280 kPa was used as the standard comparison. DCAs were evaluated for drift reduction with the use of the XR and air-induction (AI) nozzles. Wind speed ranged from 1.3 to 9.4 m/s (3 to 21 mph). Lethal drift (DL) and injury drift (DI) were determined by downwind visual observation of grain sorghum response. Drift distances were measured from the spray swath edge. The Turbo FloodJet and AI nozzles reduced DL distance by 34%. All four drift-reducing (DR) nozzles reduced DI distance by 22 to 32%. Reducing the pressure of the XR flat-fan nozzle from 280 to 140 kPa did not reduce DL or DI distance. When applied through AI nozzles, each DCA increased droplet volume diameter, one DCA reduced DI distance and none reduced DL distance when applied through XR tips. The DCAs did not affect DL or DI distance.
We sought to conduct a major objective of the CAEP Academic Section, an environmental scan of the academic emergency medicine programs across the 17 Canadian medical schools.
Methods
We developed an 84-question questionnaire, which was distributed to academic heads. The responses were validated by phone by the lead author to ensure that the questions were answered completely and consistently. Details of pediatric emergency medicine units were excluded from the scan.
Results
At eight of 17 universities, emergency medicine has full departmental status and at two it has no official academic status. Canadian academic emergency medicine is practiced at 46 major teaching hospitals and 13 specialized pediatric hospitals. Another 69 Canadian hospital EDs regularly take clinical clerks and emergency medicine residents. There are 31 full professors of emergency medicine in Canada. Teaching programs are strong with clerkships offered at 16/17 universities, CCFP(EM) programs at 17/17, and RCPSC residency programs at 14/17. Fourteen sites have at least one physician with a Master’s degree in education. There are 55 clinical researchers with salary support at 13 universities. Sixteen sites have published peer-reviewed papers in the past five years, ranging from four to 235 per site. Annual budgets range from $200,000 to $5,900,000.
Conclusion
This comprehensive review of academic activities in emergency medicine across Canada identifies areas of strengths as well as opportunities for improvement. CAEP and the Academic Section hope we can ultimately improve ED patient care by sharing best academic practices and becoming better teachers, educators, and researchers.