We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Substantial progress has been made in the standardization of nomenclature for paediatric and congenital cardiac care. In 1936, Maude Abbott published her Atlas of Congenital Cardiac Disease, which was the first formal attempt to classify congenital heart disease. The International Paediatric and Congenital Cardiac Code (IPCCC) is now utilized worldwide and has most recently become the paediatric and congenital cardiac component of the Eleventh Revision of the International Classification of Diseases (ICD-11). The most recent publication of the IPCCC was in 2017. This manuscript provides an updated 2021 version of the IPCCC.
The International Society for Nomenclature of Paediatric and Congenital Heart Disease (ISNPCHD), in collaboration with the World Health Organization (WHO), developed the paediatric and congenital cardiac nomenclature that is now within the eleventh version of the International Classification of Diseases (ICD-11). This unification of IPCCC and ICD-11 is the IPCCC ICD-11 Nomenclature and is the first time that the clinical nomenclature for paediatric and congenital cardiac care and the administrative nomenclature for paediatric and congenital cardiac care are harmonized. The resultant congenital cardiac component of ICD-11 was increased from 29 congenital cardiac codes in ICD-9 and 73 congenital cardiac codes in ICD-10 to 318 codes submitted by ISNPCHD through 2018 for incorporation into ICD-11. After these 318 terms were incorporated into ICD-11 in 2018, the WHO ICD-11 team added an additional 49 terms, some of which are acceptable legacy terms from ICD-10, while others provide greater granularity than the ISNPCHD thought was originally acceptable. Thus, the total number of paediatric and congenital cardiac terms in ICD-11 is 367. In this manuscript, we describe and review the terminology, hierarchy, and definitions of the IPCCC ICD-11 Nomenclature. This article, therefore, presents a global system of nomenclature for paediatric and congenital cardiac care that unifies clinical and administrative nomenclature.
The members of ISNPCHD realize that the nomenclature published in this manuscript will continue to evolve. The version of the IPCCC that was published in 2017 has evolved and changed, and it is now replaced by this 2021 version. In the future, ISNPCHD will again publish updated versions of IPCCC, as IPCCC continues to evolve.
In recent years, a variety of efforts have been made in political science to enable, encourage, or require scholars to be more open and explicit about the bases of their empirical claims and, in turn, make those claims more readily evaluable by others. While qualitative scholars have long taken an interest in making their research open, reflexive, and systematic, the recent push for overarching transparency norms and requirements has provoked serious concern within qualitative research communities and raised fundamental questions about the meaning, value, costs, and intellectual relevance of transparency for qualitative inquiry. In this Perspectives Reflection, we crystallize the central findings of a three-year deliberative process—the Qualitative Transparency Deliberations (QTD)—involving hundreds of political scientists in a broad discussion of these issues. Following an overview of the process and the key insights that emerged, we present summaries of the QTD Working Groups’ final reports. Drawing on a series of public, online conversations that unfolded at www.qualtd.net, the reports unpack transparency’s promise, practicalities, risks, and limitations in relation to different qualitative methodologies, forms of evidence, and research contexts. Taken as a whole, these reports—the full versions of which can be found in the Supplementary Materials—offer practical guidance to scholars designing and implementing qualitative research, and to editors, reviewers, and funders seeking to develop criteria of evaluation that are appropriate—as understood by relevant research communities—to the forms of inquiry being assessed. We dedicate this Reflection to the memory of our coauthor and QTD working group leader Kendra Koivu.1
To determine the relative risk of invasive methicillin-resistant Staphylococcus aureus (MRSA) infection among non-colonized (NC) patients, intermittently colonized (IC) patients, and persistently colonized (PC) patients.
Observational cohort study of patient data collected longitudinally over a 41-month period.
Department of Veterans Affairs Eastern Colorado Healthcare System, a tertiary care medical center.
Any patient who received ≥5 MRSA nasal swab tests between February 20, 2010, and July 26, 2013. In total, 3,872 patients met these criteria, 0 were excluded, 95% were male, 71% were white, and the mean age was 62.9 years on the date of study entry.
Patients were divided into cohorts based on MRSA colonization status. Physicians reviewed medical records to identify invasive infection and were blinded to colonization status. Cox and Kaplan-Meier analyses were used to assess the relationship between colonization status and invasive infection.
In total, 102 patients developed invasive MRSA infections, 16.3% of these were PC patients, 11.2% of these were IC patients, and 0.5% of these were NC patients. PC patients were at higher risk of invasive infection than NC patients (hazard ratio [HR] 36.8; 95% CI, 18.4–73.6; P<.001). IC patients were also at higher risk than NC patients (HR, 22.8; 95% CI, 13.3–39.3; P<.001). The difference in risk between PC and IC patients was not statistically significant (HR, 1.61; 95% CI, 0.94–2.78, P=.084). Alternate analysis methods confirmed these results.
The risk of invasive MRSA infection is much higher among PC and IC patients, supporting routine clinical testing for colonization. However, this risk is similar among PC and IC patients, suggesting that distinguishing between the 2 colonization states may not be clinically important.
Infect. Control Hosp. Epidemiol. 2015;36(11):1292–1297
Introduction
Pediatric leukemias are among the most drug responsive of human malignancies. Over 80% of children with acute lymphoblastic leukemia (ALL) can now be cured by systemic chemotherapy. Because of their drug responsiveness, childhood leukemias remain an excellent model for evaluating the pharmacodynamics, kinetics, and genetics of anti-cancer drugs.
Pharmacokinetics is the study of the absorption, distribution, metabolism, and excretion of drugs. Pharmacodynamics characterizes the relationship between pharmacokinetics and pharmacologic effects, either adverse or therapeutic. Considerable interindividual variability exists in the pharmacokinetics and in the pharmacodynamics of many anti-leukemic agents in children. Pharmacogenetics/pharmacogenomics is the inherited basis for interindividual differences in pharmacokinetics/pharmacodynamics of medications, and the individualization of therapy based on germline genotypes may be one means of minimizing interindividual variability in response to anti-leukemic agents and optimizing treatment.
Many medications exhibit broad interpatient variability and for those drugs with a wide therapeutic index (e.g., penicillins), these patient-specific differences are unlikely to affect either efficacy or toxicity. For medications with wide therapeutic indices, the vast majority of patients can be given doses high enough to produce the desired therapeutic response with little risk of toxicity. In contrast, anti-leukemic agents have a very narrow therapeutic index with substantial risk for toxicity at doses required for therapeutic effects. Furthermore, the subset of patients with the highest rate of drug clearance (i.e., metabolism, elimination) may experience suboptimal systemic exposure (i.e., blood concentration) at standard doses. Those investigations of concentration–effect relationships that have been established and linked to host genetic polymorphisms are the primary focus of this chapter.