We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Cambridge Core ecommerce is unavailable Sunday 08/12/2024 from 08:00 – 18:00 (GMT). This is due to site maintenance. We apologise for any inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tomography produces complex volumetric datasets containing the entire internal structure and density of an object in three dimensions (3D). Interpreting volumetric data requires 3D visualization but needs specialized software distinguishable from more familiar tools used in animation for 3D surface data. This tutorial reviews 3D visualization techniques for volumetric data using the open-source tomviz software package. A suite of tools including two-dimensional (2D) slices, surface contours, and full volume rendering provide quantitative and qualitative analysis of volumetric information. The principles outlined here are applicable to a wide range of 3D tomography techniques and can be applied to volumetric datasets beyond materials characterization.