The increase of agricultural production in a sustainable scenario depends on the development of new technologies to optimize the use of resources, especially fertilizers. Novel technologies in materials can provide means to the controlled release of inputs as well as to enable strategies for using poorly soluble sources.
Modern agriculture is facing a productivity challenge due to the 9 billion people demands for the next 50 years. To that, the productivity increase requests improvements in input efficiency to fill economic requirements as well as reducing their environmental impacts. Several materials can be specially designed for an adequate release of these inputs (mainly fertilizers) including ion-exchange materials, coatings and high-adsorption capacity materials. Noteworthy materials are nanoparticulate fertilizers and nanocomposites, where their size and structure are useful to control the solubilization, and consequently, the nutrient availability for plants in a synchronized way, avoiding losses to environment. Therefore, this review aims to introduce a wide view of available and in-development technologies in materials for the best management of agricultural inputs, focused in the sustainable use of fertilizers and minimal environmental impact. These different strategies offer a portfolio of possible solutions for sustainable agriculture in the next years.