Dual-frequency, multi-polarization airborne synthetic aperture radar (Pi-SAR; developed by the Communications Research Laboratory and National Space Development Agency of Japan) observations of the seasonal sea-ice region off the Okhotsk coast of Hokkaido, Japan, were carried out in February 1999 using X- and L-band radar frequencies with a resolution of 1.5 and 3.0 m. In conjunction with the SAR observations, the sea-ice thickness (draft) and velocity were measured by a moored Ice Profiling Sonar (IPS) and an Acoustic Doppler Current Profiler (ADCP). Tracks of the sea ice passing over the IPS were estimated from the time series of the ADCP ice-velocity and -direction data. Along these tracks, the SAR backscattering coefficient profiles were compared with the IPS ice-draft profiles. The results showed that the L-band SAR backs cattering profiles correlated well with the IPS ice-draft data, particularly in the thicker part (a few meters thick) of the rim of first-year ice, which had a large backscattering coefficient. Although the X-band SAR backscattering profiles did not correlate well with the IPS data, thin ice (<10 cm thick) showed a large backscattering coefficient. The L-band SAR and IPS data did not distinguish thin ice from open water.