We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Contact binaries challenge contemporary stellar astrophysics with respect to their incidence, structure, and evolution. We explore these issues through a detailed study of two bright examples: S Ant and $\varepsilon$ CrA, that permit high-resolution spectroscopy at a relatively good S/N ratio. The availability of high-quality photometry, including data from the TESS satellite as well as Gaia parallaxes, allows us to apply the Russell paradigm to produce reliable up-to-date information on the physical properties of these binaries. As a result, models of their interactive evolution, such as the thermal relaxation oscillator scenario, can be examined. Mass transfer between the components is clearly evidenced, but the variability of the O’Connell effect over relatively short-time scales points to irregularities in the mass transfer or accretion processes. Our findings indicate that S Ant may evolve into an R CMa type Algol, while the low mass ratio of $\varepsilon$ CrA suggests a likely merger of its components in the not-too-distant future.
Diagnostic criteria for major depressive disorder allow for heterogeneous symptom profiles but genetic analysis of major depressive symptoms has the potential to identify clinical and etiological subtypes. There are several challenges to integrating symptom data from genetically informative cohorts, such as sample size differences between clinical and community cohorts and various patterns of missing data.
Methods
We conducted genome-wide association studies of major depressive symptoms in three cohorts that were enriched for participants with a diagnosis of depression (Psychiatric Genomics Consortium, Australian Genetics of Depression Study, Generation Scotland) and three community cohorts who were not recruited on the basis of diagnosis (Avon Longitudinal Study of Parents and Children, Estonian Biobank, and UK Biobank). We fit a series of confirmatory factor models with factors that accounted for how symptom data was sampled and then compared alternative models with different symptom factors.
Results
The best fitting model had a distinct factor for Appetite/Weight symptoms and an additional measurement factor that accounted for the skip-structure in community cohorts (use of Depression and Anhedonia as gating symptoms).
Conclusion
The results show the importance of assessing the directionality of symptoms (such as hypersomnia versus insomnia) and of accounting for study and measurement design when meta-analyzing genetic association data.
Sub-glacial canyon features up to 580 m deep between flat terraces were identified beneath Devon Ice Cap during a 2023 radar echo sounding (RES) survey. The largest canyon connects a hypothesized brine network near the Devon Ice Cap summit with the marine-terminating Sverdrup outlet glacier. This canyon represents a probable drainage route for the hypothesized water system. Radar bed reflectivity is consistently 30 dB lower along the canyon floor than on the terraces, contradicting the signature expected for sub-glacial water. We compare these data with backscattering simulations to demonstrate that the reflectivity pattern may be topographically induced. Our simulated results indicated a 10 m wide canal-like water feature is unlikely along the canyon floor, but smaller features may be difficult to detect via RES. We calculated basal temperature profiles using a 2D finite difference method and found the floor may be up to 18°C warmer than the terraces. However, temperatures remain below the pressure melting point, and there is limited evidence that the canyon floor supports a connected drainage system between the DIC summit and Sverdrup Glacier. The terrain beneath Devon Ice Cap demonstrates limitations for RES. Future studies should evaluate additional correction methods near complex terrain, such as RES simulation as we demonstrate here.
Design hackathons offer a unique research opportunity to study time-pressured collaborative design. At the same time, research on design hackathons faces unique methodological challenges, prompting the exploration of new research approaches. This paper proposes a new data-collection framework that leverages a virtual format of hackathon events and enables a deeper insight into hackathon dynamics. The framework applicability is presented through a case study of the IDEA challenge hackathon, in which different intrusive and non-intrusive data collection approaches were used.
This article presents an fNIRS experiment investigating cognitive differences between physical and digital prototyping methods in designers (N=25) engaged in open and constrained design tasks. Initial results suggest that physical prototyping yields increased hemodynamic response (i.e., brain activity) compared to digital design, and that constrained design yields increased hemodynamic response compared to open design, in the prefrontal cortex. Further work will seek to triangulate results by investigating potential correlations to design processes and design outputs.
The brain can be represented as a network, with nodes as brain regions and edges as region-to-region connections. Nodes with the most connections (hubs) are central to efficient brain function. Current findings on structural differences in Major Depressive Disorder (MDD) identified using network approaches remain inconsistent, potentially due to small sample sizes. It is still uncertain at what level of the connectome hierarchy differences may exist, and whether they are concentrated in hubs, disrupting fundamental brain connectivity.
Methods
We utilized two large cohorts, UK Biobank (UKB, N = 5104) and Generation Scotland (GS, N = 725), to investigate MDD case–control differences in brain network properties. Network analysis was done across four hierarchical levels: (1) global, (2) tier (nodes grouped into four tiers based on degree) and rich club (between-hub connections), (3) nodal, and (4) connection.
Results
In UKB, reductions in network efficiency were observed in MDD cases globally (d = −0.076, pFDR = 0.033), across all tiers (d = −0.069 to −0.079, pFDR = 0.020), and in hubs (d = −0.080 to −0.113, pFDR = 0.013–0.035). No differences in rich club organization and region-to-region connections were identified. The effect sizes and direction for these associations were generally consistent in GS, albeit not significant in our lower-N replication sample.
Conclusion
Our results suggest that the brain's fundamental rich club structure is similar in MDD cases and controls, but subtle topological differences exist across the brain. Consistent with recent large-scale neuroimaging findings, our findings offer a connectomic perspective on a similar scale and support the idea that minimal differences exist between MDD cases and controls.
Helium or neopentane can be used as surrogate gas fill for deuterium (D2) or deuterium-tritium (DT) in laser-plasma interaction studies. Surrogates are convenient to avoid flammability hazards or the integration of cryogenics in an experiment. To test the degree of equivalency between deuterium and helium, experiments were conducted in the Pecos target chamber at Sandia National Laboratories. Observables such as laser propagation and signatures of laser-plasma instabilities (LPI) were recorded for multiple laser and target configurations. It was found that some observables can differ significantly despite the apparent similarity of the gases with respect to molecular charge and weight. While a qualitative behaviour of the interaction may very well be studied by finding a suitable compromise of laser absorption, electron density, and LPI cross sections, a quantitative investigation of expected values for deuterium fills at high laser intensities is not likely to succeed with surrogate gases.
The AD8 is a validated screening instrument for functional changes that may be caused by cognitive decline and dementia. It is frequently used in clinics and research studies because it is short and easy to administer, with a cut off score of 2 out of 8 items recommended to maximize sensitivity and specificity. This cutoff assumes that all 8 items provide equivalent “information” about everyday functioning. In this study, we used item response theory (IRT) to test this assumption. To determine the relevance of this measure of everyday functioning in men and women, and across race, ethnicity, and education, we conducted differential item functioning (DIF) analysis to test for item bias.
Participants and Methods:
Data came from the 2021 follow up of the High School & Beyond cohort (N=8,690; mean age 57.5 ± 1.2; 55% women), a nationally representative, longitudinal study of Americans who were first surveyed in 1980 when they were in the 10th or 12th grade. Participants were asked AD8 questions about their own functioning via phone or internet survey. First, we estimated a one-parameter (i.e., differing difficulty, equal discrimination across items) and two-parameter IRT model (i.e., differing difficulty and differing discrimination across items). We compared model fit using a likelihood-ratio test. Second, we tested for uniform and non-uniform DIF on AD8 items by sex, race and ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic), education level (high school or less, some college, BA degree or more), and survey mode (phone or internet). We examined DIF salience by comparing the difference between original and DIF-adjusted AD8 scores to the standard error of measurement of the original score.
Results:
The two-parameter IRT model fit the data significantly better than the one-parameter model, indicating that some items were more strongly related to underlying everyday functional ability than others. For example, the “problems with judgment” item had higher discrimination (more information) than the “less interest in hobbies/activities” item. There were significant differences in item endorsement by race/ethnicity, education, and survey mode. We found significant uniform and non-uniform DIF on several items across each of these groups. For example, for a given level of functional decline (theta) White participants were more likely to endorse “Daily problems with thinking/memory” than Black and Hispanic participants. The DIF was salient (i.e., caused AD8 scores to change by greater than the standard error of measurement for a large portion of respondents) for those with a college degree and phone respondents.
Conclusions:
In a population representative sample of Americans ∼age 57, the items on the AD8 contributed differing levels of discrimination along the range of everyday functioning that is impacted by later life cognitive impairment. This suggests that a simple cut-off or summed score may not be appropriate since some items yield more information about the underlying construct than others. Furthermore, we observed significant and salient DIF on several items by education and survey mode, AD8 scores should not be compared across education groups and assessment modes without adjustment for this measurement bias.
The GINI project investigates the dynamics of inequality among populations over the long term by synthesising global archaeological housing data. This project brings archaeologists together from around the world to assess hypotheses concerning the causes and consequences of inequality that are of relevance to contemporary societies globally.
For migrant workers who do not have access to other means of income, the platform economy offers a viable yet exploitative alternative to the conventional labour market. Migrant workers are used as a source of cheap labour by platforms – and yet, they are not disempowered. They are at the heart of a growing platform worker movement. Across different international contexts, migrants have played a key role in leading strikes and other forms of collective action. This article traces the struggles of migrant platform workers in Berlin and London to explore how working conditions, work experiences, and strategies for collective action are shaped at the intersection of multiple precarities along lines of employment and migration status. Combining data collected through research by the Fairwork project with participant observation and ethnography, the article argues that migrant workers are more than an exploitable resource: they are harbingers of change.
The NKX2.5 gene is an important cardiac developmental transcription factor, and variants in this gene are most commonly associated with CHD. However, there is an increased need to recognise associations with conduction disease and potentially dangerous ventricular arrhythmias. There is an increased risk of arrhythmia and sudden cardiac death in patients with NKX2.5 variants, an association with relatively less attention in the literature.
Methods:
We created a family pedigree and reconstructed familial relationships involving numerous relatives with CHD, conduction disease, and ventricular non-compaction following the sudden death of one family member. Two informative but distantly related family members had genetic testing to determine the cause of arrhythmias via arrhythmia/cardiomyopathy gene testing, and we identified obligate genetic-positive relatives based on family relationships and Mendelian inheritance pattern.
Results:
We identified a novel pathogenic variant in the NKX2.5 gene (c.437C > A; p. Ser146*), and segregation analysis allowed us to link family cardiac phenotypes including CHD, conduction disease, left ventricular non-compaction, and ventricular arrhythmias/sudden cardiac death.
Conclusions:
We report a novel NKX2.5 gene variant linking a spectrum of familial heart disease, and we also encourage recognition of the association between NKX2.5 gene and potentially dangerous ventricular arrhythmias, which will inform clinical risk stratification, screening, and management.
Design neurocognition is an emerging research area that can provide insights into the black box of designers’ cognitive processes. However, work to date has focused on neurocognition on its own, without integrating this with other design measures. This paper presents the results of a pilot study which brings together designer neurocognition with design output and assessment of the design process followed in a constrained prototyping activity comparing use of physical and digital Lego. This was achieved via EEG data capture, a TLX survey and measures of design output variance. Differences between physical and digital prototyping methods were found with respect to Task Related Powers of EEG signals and the design process followed with digital prototyping methods found to take longer, require more effort and cause more frustration. No differences were found with regard to design output. Whilst the sample size used (n=12) was small, future studies will use large sample sizes to increase their statistical power and will consider alternative EEG or fNIRS to capture brain activity due to challenges with the headset used in this study.
North Dakota (ND) had the highest coronavirus disease 2019 (COVID-19) case and mortality rate in the United States for nearly 2 mo. This study aims to compare 3 metrics ND used to guide public health action across its 53 counties.
Methods:
Daily COVID-19 case and death totals in North Dakota were evaluated using data from the COVID-tracker website provided by the North Department of Health (NDDoH). It was reported as: active cases per 10,000, tests administered per 10,000, and test positivity rate (the North Dakota health metric). The COVID-19 Response press conferences provided data for the Governor’s metric. The Harvard model used daily new cases per 100,000. A chi-squared test was used to compare differences in these 3 metrics on July 1, August 26, September 23, and November 13, 2020.
Results:
On July 1, no significant difference between the metrics was found. By September 23, Harvard’s health metric indicated critical risk while ND’s health metric was moderate risk, and the Governor’s metric was still low risk.
Conclusions:
ND’s and the Governor’s metric underrepresented the risk of the COVID-19 outbreak in North Dakota. The Harvard metric reflected North Dakota’s increasing risk; it should be considered as a national standard in future pandemics.
Public Health Implications:
Model-based predictors could guide policy-makers to effectively control spread of infectious disease; proactive models could reduce risk of disease as it progresses in vulnerable communities.
In October 2010, the provincial government of Ontario, Canada enacted the Open for Business Act (OBA). A central component of the OBA is its provisions aiming to streamline the enforcement of Ontario’s Employment Standards Act (ESA). The OBA’s changes to the ESA are an attempt to manage a crisis of employment standards (ES) enforcement, arising from decades of ineffective regulation, by entrenching an individualised enforcement model. The Act aims to streamline enforcement by screening people assumed to be lacking definitive proof of violations out of the complaints process. The OBA therefore produces a new category of ‘illegitimate claimants’ and attributes administrative backlogs to these people. Instead of improving the protection of workers, the OBA embeds new racialised and gendered modes of exclusion in the ES enforcement process.
Major depressive disorder (MDD) was previously associated with negative affective biases. Evidence from larger population-based studies, however, is lacking, including whether biases normalise with remission. We investigated associations between affective bias measures and depressive symptom severity across a large community-based sample, followed by examining differences between remitted individuals and controls.
Methods
Participants from Generation Scotland (N = 1109) completed the: (i) Bristol Emotion Recognition Task (BERT), (ii) Face Affective Go/No-go (FAGN), and (iii) Cambridge Gambling Task (CGT). Individuals were classified as MDD-current (n = 43), MDD-remitted (n = 282), or controls (n = 784). Analyses included using affective bias summary measures (primary analyses), followed by detailed emotion/condition analyses of BERT and FAGN (secondary analyses).
Results
For summary measures, the only significant finding was an association between greater symptoms and lower risk adjustment for CGT across the sample (individuals with greater symptoms were less likely to bet more, despite increasingly favourable conditions). This was no longer significant when controlling for non-affective cognition. No differences were found for remitted-MDD v. controls. Detailed analysis of BERT and FAGN indicated subtle negative biases across multiple measures of affective cognition with increasing symptom severity, that were independent of non-effective cognition [e.g. greater tendency to rate faces as angry (BERT), and lower accuracy for happy/neutral conditions (FAGN)]. Results for remitted-MDD were inconsistent.
Conclusions
This suggests the presence of subtle negative affective biases at the level of emotion/condition in association with depressive symptoms across the sample, over and above those accounted for by non-affective cognition, with no evidence for affective biases in remitted individuals.
Major depressive disorder (MDD) is a polygenic disorder associated with brain alterations but until recently, there have been no brain-based metrics to quantify individual-level variation in brain morphology. Here, we evaluated and compared the performance of a new brain-based ‘Regional Vulnerability Index’ (RVI) with polygenic risk scores (PRS), in the context of MDD. We assessed associations with syndromal MDD in an adult sample (N = 702, age = 59 ± 10) and with subclinical depressive symptoms in a longitudinal adolescent sample (baseline N = 3,825, age = 10 ± 1; 2-year follow-up N = 2,081, age = 12 ± 1).
Methods
MDD-RVIs quantify the correlation of the individual’s corresponding brain metric with the expected pattern for MDD derived in an independent sample. Using the same methodology across samples, subject-specific MDD-PRS and six MDD-RVIs based on different brain modalities (subcortical volume, cortical thickness, cortical surface area, mean diffusivity, fractional anisotropy, and multimodal) were computed.
Results
In adults, MDD-RVIs (based on white matter and multimodal measures) were more strongly associated with MDD (β = 0.099–0.281, PFDR = 0.001–0.043) than MDD-PRS (β = 0.056–0.152, PFDR = 0.140–0.140). In adolescents, depressive symptoms were associated with MDD-PRS at baseline and follow-up (β = 0.084–0.086, p = 1.38 × 10−4−4.77 × 10−4) but not with any MDD-RVIs (β < 0.05, p > 0.05).
Conclusions
Our results potentially indicate the ability of brain-based risk scores to capture a broader range of risk exposures than genetic risk scores in adults and are also useful in helping us to understand the temporal origins of depression-related brain features. Longitudinal data, specific to the developmental period and on white matter measures, will be useful in informing risk for subsequent psychiatric illness.
Monoclonal antibody therapeutics to treat coronavirus disease (COVID-19) have been authorized by the US Food and Drug Administration under Emergency Use Authorization (EUA). Many barriers exist when deploying a novel therapeutic during an ongoing pandemic, and it is critical to assess the needs of incorporating monoclonal antibody infusions into pandemic response activities. We examined the monoclonal antibody infusion site process during the COVID-19 pandemic and conducted a descriptive analysis using data from 3 sites at medical centers in the United States supported by the National Disaster Medical System. Monoclonal antibody implementation success factors included engagement with local medical providers, therapy batch preparation, placing the infusion center in proximity to emergency services, and creating procedures resilient to EUA changes. Infusion process challenges included confirming patient severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity, strained staff, scheduling, and pharmacy coordination. Infusion sites are effective when integrated into pre-existing pandemic response ecosystems and can be implemented with limited staff and physical resources.
Seed retention, and ultimately seed shatter, are extremely important for the efficacy of harvest weed seed control (HWSC) and are likely influenced by various agroecological and environmental factors. Field studies investigated seed-shattering phenology of 22 weed species across three soybean [Glycine max (L.) Merr.]-producing regions in the United States. We further evaluated the potential drivers of seed shatter in terms of weather conditions, growing degree days, and plant biomass. Based on the results, weather conditions had no consistent impact on weed seed shatter. However, there was a positive correlation between individual weed plant biomass and delayed weed seed–shattering rates during harvest. This work demonstrates that HWSC can potentially reduce weed seedbank inputs of plants that have escaped early-season management practices and retained seed through harvest. However, smaller individuals of plants within the same population that shatter seed before harvest pose a risk of escaping early-season management and HWSC.
Although potential links between oxytocin (OT), vasopressin (AVP), and social cognition are well-grounded theoretically, most studies have included all male samples, and few have demonstrated consistent effects of either neuropeptide on mentalizing (i.e. understanding the mental states of others). To understand the potential of either neuropeptide as a pharmacological treatment for individuals with impairments in social cognition, it is important to demonstrate the beneficial effects of OT and AVP on mentalizing in healthy individuals.
Methods
In the present randomized, double-blind, placebo-controlled study (n = 186) of healthy individuals, we examined the effects of OT and AVP administration on behavioral responses and neural activity in response to a mentalizing task.
Results
Relative to placebo, neither drug showed an effect on task reaction time or accuracy, nor on whole-brain neural activation or functional connectivity observed within brain networks associated with mentalizing. Exploratory analyses included several variables previously shown to moderate OT's effects on social processes (e.g., self-reported empathy, alexithymia) but resulted in no significant interaction effects.
Conclusions
Results add to a growing literature demonstrating that intranasal administration of OT and AVP may have a more limited effect on social cognition, at both the behavioral and neural level, than initially assumed. Randomized controlled trial registrations: ClinicalTrials.gov; NCT02393443; NCT02393456; NCT02394054.