Thin films of lead zirconate titanate have been fabricated for application to a new family of flexure-wave piezoelectric micromotors that are characterized by low speed and high torque. The high relative dielectric constant and breakdown strength of the films lead to high stored energy densities. Evaluation of the film as a bimorph yielded a value of -88 pC/N for the transverse piezoelectric strain coefficient, d31; the relevant electromechanical coupling factor, k31, calculated thereupon was 0.22. The development of the piezoelectric ultrasonic micromotors from the PZT thin films, and the architecture of the stator structure are described. Nonoptimized prototype micromotors show rotational velocities of 100-300 rpm at drives of 3-5 V.