We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We have analyzed Chandra/High Energy Transmission Grating spectra of the X-ray emission line gas in the Seyfert galaxy NGC 4151. The zeroth-order spectral images show extended H- and He-like O and Ne, up to a distance r ˜ 200 pc from the nucleus. Using the 1st-order spectra, we measure an average line velocity ˜230 km s–1, suggesting significant outflow of X-ray gas. We generated Cloudy photoionization models to fit the 1st-order spectra; the fit required three distinct emission-line components. To estimate the total mass of ionized gas (M) and the mass outflow rates, we applied the model parameters to fit the zeroth-order emission-line profiles of Ne IX and Ne X. We determined an M ≍ 5.4 × 105Mʘ. Assuming the same kinematic profile as that for the [O III] gas, derived from our analysis of Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra, the peak X-ray mass outflow rate is approximately 1.8 Mʘ yr–1, at r ˜ 150 pc. The total mass and mass outflow rates are similar to those determined using [O III], implying that the X-ray gas is a major outflow component. However, unlike the optical outflows, the X-ray emitting mass outflow rate does not drop off at r > 100pc, which suggests that it may have a greater impact on the host galaxy.
We present spatially resolved kinematics of ionized gas in the narrow-line region (NLR) and extended narrow-line region (ENLR) in a sample of nearby active galaxies. Utilizing long-slit spectroscopy from Apache Point Observatory (APO)13s ARC 3.5 m Telescope and Hubble Space Telescope (HST) we analyzed the strong λ5007 Å [O III] emission line profiles and mapped the radial velocity distribution of gas at increasing radii from the center. We identified the extents of Active Galactic Nuclei (AGN) driven outflows in our sample and determined the distances at which the observed gas kinematics is being dominated by the rotation of the host galaxy. We also measured the effectiveness of radiative driving of the ionized gas using mass distribution profiles calculated with two-dimensional modeling of surface brightness profiles in our targets. Finally, we compared our kinematic results of the outflow sizes with the maximum distances at which the gas is being radiatively driven to investigate whether these outflows are capable of disrupting or evacuating the star-forming gas at these distances.
We used Space Telescope Imaging Spectrograph (STIS) long slit medium-resolution G430M and G750M spectra to analyze the extended [O III] λ5007 emission in a sample of twelve QSO2s from Reyes et al. (2008). The purpose of the study was to determine the properties of the mass outflows and their role in AGN feedback. We measured fluxes and velocities as functions of deprojected radial distances. Using photoionization models and ionizing luminosities derived from [O III], we were able to estimate the densities for the emission-line gas. From these results, we derived masses, mass outflow rates, kinetic energies and kinetic luminosity rates as a function of radial distance for each of the targets. Masses are several times 103 - 107 solar masses, which are comparable to values determined from a recent photoionization study of Mrk 34 (Revalski). Additionally, we are studying the possible role of X-ray winds in these QSO2s.
We investigate the processes of active galactic nuclei (AGN) feeding and feedback in the narrow line regions (NLRs) and host galaxies of nearby AGN through spatially resolved spectroscopy with the Gemini Near-Infrared Integral Field Spectrograph (NIFS) and the Hubble Space Telescope’s Space Telescope Imaging Spectrograph (STIS). We examine the connection between nuclear and galactic inflows and outflows by adding long-slit spectra of the host galaxies from Apache Point Observatory. We demonstrate that nearby AGN can be fueled by a variety of mechanisms. We find that the NLR kinematics can often be explained by in situ ionization and radiative acceleration of ambient gas, often in the form of dusty molecular spirals that may be the fueling flow to the AGN.
Let X be a completely regular Hausdorff topological space and let C(X) (the set of all real-valued bounded and continuous in X functions) be endowed with the sup-norm. Let ßX, as usual, denotes the Stone-Čech compactification of X. We give a characterization of those X for which the set
contains a dense -subset of C(X). These are just the spaces X which contain a dense Čech complete subspace. We call such spaces almost Čech complete. We also prove that X contains a dense completely metrizable subspace, if, and only if, C(X) contains a dense -subset of functions which determine Tykhonov well-posed optimization problems over X. For a compact Hausdorff topological space X the latter result was proved by Čoban and Kenderov [CK1.CK2]. Relations between the well-posedness and Gâteaux and Fréchet differentiability of convex functionals in C(X) are investigated. In particular it is shown that the sup-norm in C(X) is Frechet differentiable at the points of a dense -subset of C(X), if, and only if, the set of isolated points of X is dense in X. Conditions and examples are given when the set of points of Gateaux differentiability of the sup-norm in C(X) is a dense and Baire subspace of C(X) but does not contain a dense -subset of C(X).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.