We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: Despite a higher prevalence of traumatic spinal cord injury (TSCI) amongst Canadian Indigenous peoples, there is a paucity of studies focused on Indigenous TSCI. We present the first Canada-wide study comparing TSCI amongst Canadian Indigenous and non-Indigenous peoples. Methods: This study is a retrospective analysis of prospectively-collected TSCI data from the Rick Hansen Spinal Cord Injury Registry (RHSCIR) from 2004-2019. We divided participants into Indigenous and non-Indigenous cohorts and compared them with respect to demographics, injury mechanism, level, severity, and outcomes. Results: Compared with non-Indigenous patients, Indigenous patients were younger, more female, less likely to have higher education, and less likely to be employed. The mechanism of injury was more likely due to assault or transportation-related trauma in the Indigenous group. The length of stay for Indigenous patients was longer. Indigenous patients were more likely to be discharged to a rural setting, less likely to be discharged home, and more likely to be unemployed following injury. Conclusions: Our results suggest that more resources need to be dedicated for transitioning Indigenous patients sustaining a TSCI to community living and for supporting these patients in their home communities. A focus on resources and infrastructure for Indigenous patients by engagement with Indigenous communities is needed.
The long-distance stable transport of relativistic electron beams (REBs) in plasmas is studied by full three-dimensional particle-in-cell simulations. Theoretical analysis shows that the beam transport is mainly influenced by three transverse instabilities, where the excitation of self-modulation instability, and the suppression of the filamentation instability and the hosing instability are important to realize the beam stable transport. By modulating the transport parameters such as the electron density ratio, the relativistic Lorentz factor, the beam envelopes and the density profiles, the relativistic bunches having a smooth density profile and a length of several plasma wave periods can suppress the beam-plasma instabilities and propagate in plasmas for long distances with small energy losses. The results provide a reference for the research of long-distance and stable transport of REBs, and would be helpful for new particle beam diagnosis technology and space active experiments.
Mid- and far-infrared (IR) photometric and spectroscopic observations are fundamental to a full understanding of the dust-obscured Universe and the evolution of both star formation and black hole accretion in galaxies. In this work, using the specifications of the SPace Infrared telescope for Cosmology and Astrophysics (SPICA) as a baseline, we investigate the capability to study the dust-obscured Universe of mid- and far-IR photometry at 34 and
$70\, {\rm{\mu }}\mathrm{m}$
and low-resolution spectroscopy at
$17{-}36\, {\rm{\mu }}\mathrm{m}$
using the state-of-the-art Spectro-Photometric Realisations of Infrared-selected Targets at all-z (Spritz) simulation. This investigation is also compared to the expected performance of the Origins Space Telescope and the Galaxy Evolution Probe. The photometric view of the Universe of a SPICA-like mission could cover not only bright objects (e.g.
$L_{IR}>10^{12}\,{\rm L}_{\odot}$
) up to
${z}=10$
, but also normal galaxies (
$L_{IR}<10^{11}\,{\rm L}_{\odot}$
) up to
$\textit{z}\sim4$
. At the same time, the spectroscopic observations of such mission could also allow us to estimate the redshifts and study the physical properties for thousands of star-forming galaxies and active galactic nuclei by observing the polycyclic aromatic hydrocarbons and a large set of IR nebular emission lines. In this way, a cold, 2.5-m size space telescope with spectro-photometric capability analogous to SPICA, could provide us with a complete three-dimensional (i.e. images and integrated spectra) view of the dust-obscured Universe and the physics governing galaxy evolution up to
$\textit{z}\sim4$
.
The cosmic evolution of the chemical elements from the Big Bang to the present time is driven by nuclear fusion reactions inside stars and stellar explosions. A cycle of matter recurrently re-processes metal-enriched stellar ejecta into the next generation of stars. The study of cosmic nucleosynthesis and this matter cycle requires the understanding of the physics of nuclear reactions, of the conditions at which the nuclear reactions are activated inside the stars and stellar explosions, of the stellar ejection mechanisms through winds and explosions, and of the transport of the ejecta towards the next cycle, from hot plasma to cold, star-forming gas. Due to the long timescales of stellar evolution, and because of the infrequent occurrence of stellar explosions, observational studies are challenging, as they have biases in time and space as well as different sensitivities related to the various astronomical methods. Here, we describe in detail the astrophysical and nuclear-physical processes involved in creating two radioactive isotopes useful in such studies,
$^{26}\mathrm{Al}$
and
$^{60}\mathrm{Fe}$
. Due to their radioactive lifetime of the order of a million years, these isotopes are suitable to characterise simultaneously the processes of nuclear fusion reactions and of interstellar transport. We describe and discuss the nuclear reactions involved in the production and destruction of
$^{26}\mathrm{Al}$
and
$^{60}\mathrm{Fe}$
, the key characteristics of the stellar sites of their nucleosynthesis and their interstellar journey after ejection from the nucleosynthesis sites. This allows us to connect the theoretical astrophysical aspects to the variety of astronomical messengers presented here, from stardust and cosmic-ray composition measurements, through observation of
$\gamma$
rays produced by radioactivity, to material deposited in deep-sea ocean crusts and to the inferred composition of the first solids that have formed in the Solar System. We show that considering measurements of the isotopic ratio of
$^{26}\mathrm{Al}$
to
$^{60}\mathrm{Fe}$
eliminate some of the unknowns when interpreting astronomical results, and discuss the lessons learned from these two isotopes on cosmic chemical evolution. This review paper has emerged from an ISSI-BJ Team project in 2017–2019, bringing together nuclear physicists, astronomers, and astrophysicists in this inter-disciplinary discussion.
Mars exploration motivates the search for extraterrestrial life, the development of space technologies, and the design of human missions and habitations. Here, we seek new insights and pose unresolved questions relating to the natural history of Mars, habitability, robotic and human exploration, planetary protection, and the impacts on human society. Key observations and findings include:
– high escape rates of early Mars' atmosphere, including loss of water, impact present-day habitability;
– putative fossils on Mars will likely be ambiguous biomarkers for life;
– microbial contamination resulting from human habitation is unavoidable; and
– based on Mars' current planetary protection category, robotic payload(s) should characterize the local martian environment for any life-forms prior to human habitation.
Some of the outstanding questions are:
– which interpretation of the hemispheric dichotomy of the planet is correct;
– to what degree did deep-penetrating faults transport subsurface liquids to Mars' surface;
– in what abundance are carbonates formed by atmospheric processes;
– what properties of martian meteorites could be used to constrain their source locations;
– the origin(s) of organic macromolecules;
– was/is Mars inhabited;
– how can missions designed to uncover microbial activity in the subsurface eliminate potential false positives caused by microbial contaminants from Earth;
– how can we ensure that humans and microbes form a stable and benign biosphere; and
– should humans relate to putative extraterrestrial life from a biocentric viewpoint (preservation of all biology), or anthropocentric viewpoint of expanding habitation of space?
Studies of Mars' evolution can shed light on the habitability of extrasolar planets. In addition, Mars exploration can drive future policy developments and confirm (or put into question) the feasibility and/or extent of human habitability of space.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
This study investigated the audiometric and sound localisation results in patients with conductive hearing loss after bilateral Bonebridge implantation.
Method
Eight patients with congenital microtia and atresia supplied with bilateral Bonebridge devices were enrolled in this study. Hearing tests and sound localisation were tested under unaided, unilateral and bilateral aided conditions.
Results
Mean functional gain was higher with a bilateral fitting than with a unilateral fitting, especially at 1.0–4.0 kHz (p < 0.05, both). The improvement in speech reception threshold in noise with a bilateral fitting was a 2.3 dB higher signal-to-noise ratio compared with unilateral fitting (p < 0.05). Bilateral fitting had better sound localisation than unilateral fitting (p <0.001). Four participants who attended follow up showed improved sound localisation ability after one year.
Conclusion
Patients demonstrated better hearing threshold, speech reception thresholds in noise and directional hearing with bilateral Bonebridge devices than with a unilateral Bonebridge device. Sound localisation ability with bilateral Bonebridge devices can be improved through long-term training.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to
$\sim\!5$
yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of
$\sim\!162$
h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of
$0.24\ \mathrm{mJy\ beam}^{-1}$
and angular resolution of
$12-20$
arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
Substantial progress has been made in the standardization of nomenclature for paediatric and congenital cardiac care. In 1936, Maude Abbott published her Atlas of Congenital Cardiac Disease, which was the first formal attempt to classify congenital heart disease. The International Paediatric and Congenital Cardiac Code (IPCCC) is now utilized worldwide and has most recently become the paediatric and congenital cardiac component of the Eleventh Revision of the International Classification of Diseases (ICD-11). The most recent publication of the IPCCC was in 2017. This manuscript provides an updated 2021 version of the IPCCC.
The International Society for Nomenclature of Paediatric and Congenital Heart Disease (ISNPCHD), in collaboration with the World Health Organization (WHO), developed the paediatric and congenital cardiac nomenclature that is now within the eleventh version of the International Classification of Diseases (ICD-11). This unification of IPCCC and ICD-11 is the IPCCC ICD-11 Nomenclature and is the first time that the clinical nomenclature for paediatric and congenital cardiac care and the administrative nomenclature for paediatric and congenital cardiac care are harmonized. The resultant congenital cardiac component of ICD-11 was increased from 29 congenital cardiac codes in ICD-9 and 73 congenital cardiac codes in ICD-10 to 318 codes submitted by ISNPCHD through 2018 for incorporation into ICD-11. After these 318 terms were incorporated into ICD-11 in 2018, the WHO ICD-11 team added an additional 49 terms, some of which are acceptable legacy terms from ICD-10, while others provide greater granularity than the ISNPCHD thought was originally acceptable. Thus, the total number of paediatric and congenital cardiac terms in ICD-11 is 367. In this manuscript, we describe and review the terminology, hierarchy, and definitions of the IPCCC ICD-11 Nomenclature. This article, therefore, presents a global system of nomenclature for paediatric and congenital cardiac care that unifies clinical and administrative nomenclature.
The members of ISNPCHD realize that the nomenclature published in this manuscript will continue to evolve. The version of the IPCCC that was published in 2017 has evolved and changed, and it is now replaced by this 2021 version. In the future, ISNPCHD will again publish updated versions of IPCCC, as IPCCC continues to evolve.
We present 63 new multi-site radial velocity (RV) measurements of the K1III giant HD 76920, which was recently reported to host the most eccentric planet known to orbit an evolved star. We focused our observational efforts on the time around the predicted periastron passage and achieved near-continuous phase coverage of the corresponding RV peak. By combining our RV measurements from four different instruments with previously published ones, we confirm the highly eccentric nature of the system and find an even higher eccentricity of
$e=0.8782 \pm 0.0025$
, an orbital period of
$415.891^{+0.043}_{-0.039}\,\textrm{d}$
, and a minimum mass of
$3.13^{+0.41}_{-0.43}\,\textrm{M}_{\textrm{J}}$
for the planet. The uncertainties in the orbital elements are greatly reduced, especially for the period and eccentricity. We also performed a detailed spectroscopic analysis to derive atmospheric stellar parameters, and thus the fundamental stellar parameters (
$M_*, R_*, L_*$
), taking into account the parallax from Gaia DR2, and independently determined the stellar mass and radius using asteroseismology. Intriguingly, at periastron, the planet comes to within 2.4 stellar radii of its host star’s surface. However, we find that the planet is not currently experiencing any significant orbital decay and will not be engulfed by the stellar envelope for at least another 50–80 Myr. Finally, while we calculate a relatively high transit probability of 16%, we did not detect a transit in the TESS photometry.
ABSTRACT IMPACT: The potential to use vaginal pH as a low cost, non-invasive diagnostic test at the point of CIN2 diagnosis to predict worsening of cervical disease. OBJECTIVES/GOALS: We previously reported that persistence/progression of cervical intraepithelial neoplasia-2 (CIN2) was uncommon in women living with HIV (WLH) from the Women’s Interagency HIV Study (WIHS, now MWCCS). Here we examined additional factors that may influence CIN2 natural history. METHODS/STUDY POPULATION: A total of 337 samples from 94 WLH with a confirmed CIN2 diagnosis were obtained from the MWCCS. 42 cervicovaginal HPV types and 34 cervicovaginal cytokines/chemokines were measured at CIN2 diagnosis (94 samples) and 6-12 months prior to CIN2 diagnosis (79 samples). Covariates, including CD4 count and vaginal pH, were abstracted from core MWCCS visits. Logistic regression models were used to explore CIN2 regression (CIN1, normal) vs. persistence/progression (CIN2, CIN3). Log rank tests, Kaplan Meier method, and Cox regression modeling were used to determine CIN2 regression rates. RESULTS/ANTICIPATED RESULTS: The most prevalent HPV types were HPV54 (21.6%) and 53 (21.3%). 33 women (35.1%) had a subsequent CIN2/CIN3 diagnosis (median 12.5 years follow-up). Each additional hr-HPV type detected at the pre-CIN2 visit associated with increased odds of CIN2 persistence/progression (OR 2.27, 95% CI 1.15, 4.50). Higher vaginal pH (aOR 2.27, 95% CI 1.15, 4.50) and bacterial vaginosis (aOR 5.08, 95% CI 1.30, 19.94) at the CIN2 diagnosis visit associated with higher odds of CIN2 persistence/progression. Vaginal pH >4.5 at CIN2 diagnosis also associated with unadjusted time to CIN2 persistence/progression (log rank p=0.002) and a higher rate of CIN2 persistence/progression (adjusted hazard ratio [aHR] 3.37, 95% CI 1.26, 8.99). Cervicovaginal cytokine/chemokine levels were not associated with CIN2 persistence/progression. DISCUSSION/SIGNIFICANCE OF FINDINGS: We found relatively low prevalence of HPV16/18 in this cohort. Elevated vaginal pH at the time of CIN2 diagnosis may be a useful indicator of CIN2 persistence/progression and the rate of persistence/progression.
ABSTRACT IMPACT: This work will standardize necessary image pre-processing for diagnostic and prognostic clinical workflows dependent on quantitative analysis of conventional magnetic resonance imaging. OBJECTIVES/GOALS: Conventional magnetic resonance imaging (MRI) poses challenges for quantitative analysis due to a lack of uniform inter-scanner voxel intensity values. Head and neck cancer (HNC) applications in particular have not been well investigated. This project aims to systematically evaluate voxel intensity standardization (VIS) methods for HNC MRI. METHODS/STUDY POPULATION: We utilize two separate cohorts of HNC patients, where T2-weighted (T2-w) MRI sequences were acquired before beginning radiotherapy for five patients in each cohort. The first cohort corresponds to patients with images taken at various institutions with a variety of non-uniform acquisition scanners and parameters. The second cohort corresponds to patients from a prospective clinical trial with uniformity in both scanner and acquisition parameters. Regions of interest from a variety of healthy tissues assumed to have minimal interpatient variation were manually contoured for each image and used to compare differences between a variety of VIS methods for each cohort. Towards this end, we implement a new metric for cohort intensity distributional overlap to compare region of interest similarity in a given cohort. RESULTS/ANTICIPATED RESULTS: Using a simple and interpretable metric, we have systematically investigated the effects of various commonly implementable VIS methods on T2-w sequences for two independent cohorts of HNC patients based on region of interest intensity similarity. We demonstrate VIS has a substantial effect on T2-w images where non-uniform acquisition parameters and scanners are utilized. Oppositely, it has a modest to minimal impact on T2-w images generated from the same scanner with the same acquisition parameters. Moreover, with a few notable exceptions, there does not seem to be a clear advantage or disadvantage to using one VIS method over another for T2-w images with non-uniform acquisition parameters. DISCUSSION/SIGNIFICANCE OF FINDINGS: Our results inform which VIS methods should be favored in HNC MRI and may indicate VIS is not a critical factor to consider in circumstances where similar acquisition parameters can be utilized. Moreover, our results can help guide downstream quantitative imaging tasks that may one day be implemented in clinical workflows.
To examine associations between diet and risk of developing gastro-oesophageal reflux disease (GERD).
Design:
Prospective cohort with a median follow-up of 15·8 years. Baseline diet was measured using a FFQ. GERD was defined as self-reported current or history of daily heartburn or acid regurgitation beginning at least 2 years after baseline. Sex-specific logistic regressions were performed to estimate OR for GERD associated with diet quality scores and intakes of nutrients, food groups and individual foods and beverages. The effect of substituting saturated fat for monounsaturated or polyunsaturated fat on GERD risk was examined.
Setting:
Melbourne, Australia.
Participants:
A cohort of 20 926 participants (62 % women) aged 40–59 years at recruitment between 1990 and 1994.
Results:
For men, total fat intake was associated with increased risk of GERD (OR 1·05 per 5 g/d; 95 % CI 1·01, 1·09; P = 0·016), whereas total carbohydrate (OR 0·89 per 30 g/d; 95 % CI 0·82, 0·98; P = 0·010) and starch intakes (OR 0·84 per 30 g/d; 95 % CI 0·75, 0·94; P = 0·005) were associated with reduced risk. Nutrients were not associated with risk for women. For both sexes, substituting saturated fat for polyunsaturated or monounsaturated fat did not change risk. For both sexes, fish, chicken, cruciferous vegetables and carbonated beverages were associated with increased risk, whereas total fruit and citrus were associated with reduced risk. No association was observed with diet quality scores.
Conclusions:
Diet is a possible risk factor for GERD, but food considered as triggers of GERD symptoms might not necessarily contribute to disease development. Potential differential associations for men and women warrant further investigation.
To investigate the influences of dietary riboflavin (RF) addition on nutrient digestion and rumen fermentation, eight rumen cannulated Holstein bulls were randomly allocated into four treatments in a repeated 4 × 4 Latin square design. Daily addition level of RF for each bull in control, low RF, medium RF and high RF was 0, 300, 600 and 900 mg, respectively. Increasing the addition level of RF, DM intake was not affected, average daily gain tended to be increased linearly and feed conversion ratio decreased linearly. Total tract digestibilities of DM, organic matter, crude protein (CP) and neutral-detergent fibre (NDF) increased linearly. Rumen pH decreased quadratically, and total volatile fatty acids (VFA) increased quadratically. Acetate molar percentage and acetate:propionate ratio increased linearly, but propionate molar percentage and ammonia-N content decreased linearly. Rumen effective degradability of DM increased linearly, NDF increased quadratically but CP was unaltered. Activity of cellulase and populations of total bacteria, protozoa, fungi, dominant cellulolytic bacteria, Prevotella ruminicola and Ruminobacter amylophilus increased linearly. Linear increase was observed for urinary total purine derivatives excretion. The data suggested that dietary RF addition was essential for rumen microbial growth, and no further increase in performance and rumen total VFA concentration was observed when increasing RF level from 600 to 900 mg/d in dairy bulls.
Lifestyle interventions are an important and viable approach for preventing cognitive deficits. However, the results of studies on alcohol, coffee and tea consumption in relation to cognitive decline have been divergent, likely due to confounds from dose–response effects. This meta-analysis aimed to find the dose–response relationship between alcohol, coffee or tea consumption and cognitive deficits.
Methods
Prospective cohort studies or nested case-control studies in a cohort investigating the risk factors of cognitive deficits were searched in PubMed, Embase, the Cochrane and Web of Science up to 4th June 2020. Two authors searched the databases and extracted the data independently. We also assessed the quality of the studies with the Newcastle-Ottawa scale. Stata 15.0 software was used to perform model estimation and plot the linear or nonlinear dose–response relationship graphs.
Results
The search identified 29 prospective studies from America, Japan, China and some European countries. The dose–response relationships showed that compared to non-drinkers, low consumption (<11 g/day) of alcohol could reduce the risk of cognitive deficits or only dementias, but there was no significant effect of heavier drinking (>11 g/day). Low consumption of coffee reduced the risk of any cognitive deficit (<2.8 cups/day) or dementia (<2.3 cups/day). Green tea consumption was a significant protective factor for cognitive health (relative risk, 0.94; 95% confidence intervals, 0.92–0.97), with one cup of tea per day brings a 6% reduction in risk of cognitive deficits.
Conclusions
Light consumption of alcohol (<11 g/day) and coffee (<2.8 cups/day) was associated with reduced risk of cognitive deficits. Cognitive benefits of green tea consumption increased with the daily consumption.
The coronavirus disease 2019 (COVID-19) pandemic represents an unprecedented threat to mental health. Herein, we assessed the impact of COVID-19 on subthreshold depressive symptoms and identified potential mitigating factors.
Methods
Participants were from Depression Cohort in China (ChiCTR registry number 1900022145). Adults (n = 1722) with subthreshold depressive symptoms were enrolled between March and October 2019 in a 6-month, community-based interventional study that aimed to prevent clinical depression using psychoeducation. A total of 1506 participants completed the study in Shenzhen, China: 726 participants, who completed the study between March 2019 and January 2020 (i.e. before COVID-19), comprised the ‘wave 1’ group; 780 participants, who were enrolled before COVID-19 and completed the 6-month endpoint assessment during COVID-19, comprised ‘wave 2’. Symptoms of depression, anxiety and insomnia were assessed at baseline and endpoint (i.e. 6-month follow-up) using the Patient Health Questionnaire-9 (PHQ-9), Generalised Anxiety Disorder-7 (GAD-7) and Insomnia Severity Index (ISI), respectively. Measures of resilience and regular exercise were assessed at baseline. We compared the mental health outcomes between wave 1 and wave 2 groups. We additionally investigated how mental health outcomes changed across disparate stages of the COVID-19 pandemic in China, i.e. peak (7–13 February), post-peak (14–27 February), remission plateau (28 February−present).
Results
COVID-19 increased the risk for three mental outcomes: (1) depression (odds ratio [OR] = 1.30, 95% confidence interval [CI]: 1.04–1.62); (2) anxiety (OR = 1.47, 95% CI: 1.16–1.88) and (3) insomnia (OR = 1.37, 95% CI: 1.07–1.77). The highest proportion of probable depression and anxiety was observed post-peak, with 52.9% and 41.4%, respectively. Greater baseline resilience scores had a protective effect on the three main outcomes (depression: OR = 0.26, 95% CI: 0.19–0.37; anxiety: OR = 1.22, 95% CI: 0.14–0.33 and insomnia: OR = 0.18, 95% CI: 0.11–0.28). Furthermore, regular physical activity mitigated the risk for depression (OR = 0.79, 95% CI: 0.79–0.99).
Conclusions
The COVID-19 pandemic exerted a highly significant and negative impact on symptoms of depression, anxiety and insomnia. Mental health outcomes fluctuated as a function of the duration of the pandemic and were alleviated to some extent with the observed decline in community-based transmission. Augmenting resiliency and regular exercise provide an opportunity to mitigate the risk for mental health symptoms during this severe public health crisis.
An acute gastroenteritis (AGE) outbreak caused by a norovirus occurred at a hospital in Shanghai, China, was studied for molecular epidemiology, host susceptibility and serological roles. Rectal and environmental swabs, paired serum samples and saliva specimens were collected. Pathogens were detected by real-time polymerase chain reaction and DNA sequencing. Histo-blood group antigens (HBGA) phenotypes of saliva samples and their binding to norovirus protruding proteins were determined by enzyme-linked immunosorbent assay. The HBGA-binding interfaces and the surrounding region were analysed by the MegAlign program of DNAstar 7.1. Twenty-seven individuals in two care units were attacked with AGE at attack rates of 9.02 and 11.68%. Eighteen (78.2%) symptomatic and five (38.4%) asymptomatic individuals were GII.6/b norovirus positive. Saliva-based HBGA phenotyping showed that all symptomatic and asymptomatic cases belonged to A, B, AB or O secretors. Only four (16.7%) out of the 24 tested serum samples showed low blockade activity against HBGA-norovirus binding at the acute phase, whereas 11 (45.8%) samples at the convalescence stage showed seroconversion of such blockade. Specific blockade antibody in the population played an essential role in this norovirus epidemic. A wide HBGA-binding spectrum of GII.6 supports a need for continuous health attention and surveillance in different settings.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
Background:
Infection prevention and control (IPC) workflows are often retrospective and manual. New tools, however, have entered the field to facilitate rapid prospective monitoring of infections in hospitals. Although artificial intelligence (AI)–enabled platforms facilitate timely, on-demand integration of clinical data feeds with pathogen whole-genome sequencing (WGS), a standardized workflow to fully harness the power of such tools is lacking. We report a novel, evidence-based workflow that promotes quicker infection surveillance via AI-assisted clinical and WGS data analysis. The algorithm suggests clusters based on a combination of similar minimum inhibitory concentration (MIC) data, timing of sample collection, and shared location stays between patients. It helps to proactively guide IPC professionals during investigation of infectious outbreaks and surveillance of multidrug-resistant organisms and healthcare-acquired infections. Methods: Our team established a 1-year workgroup comprised of IPC practitioners, clinical experts, and scientists in the field. We held weekly roundtables to study lessons learned in an ongoing surveillance effort at a tertiary care hospital—utilizing Philips IntelliSpace Epidemiology (ISEpi), an AI-powered system—to understand how such a tool can enhance practice. Based on real-time case discussions and evidence from the literature, a workflow guidance tool and checklist were codified. Results: In our workflow, data-informed clusters posed by ISEpi underwent triage and expert follow-up analysis to assess: (1) likelihood of transmission(s); (2) potential vector(s) identity; (3) need to request WGS; and (4) intervention(s) to be pursued, if warranted. In a representative sample (spanning October 17, 2019, to November 7, 2019) of 67 total isolates suggested for inclusion in 19 unique cluster investigations, we determined that 9 investigations merited follow-up. Collectively, these 9 investigations involved 21 patients and required 115 minutes to review in ISEpi and an additional 70 minutes of review outside of ISEpi. After review, 6 investigations were deemed unlikely to represent a transmission; the other 3 had potential to represent transmission for which interventions would be performed. Conclusions: This study offers an important framework for adaptation of existing infection control workflow strategies to leverage the utility of rapidly integrated clinical and WGS data. This workflow can also facilitate time-sensitive decisions regarding sequencing of specific pathogens given the preponderance of available clinical data supporting investigations. In this regard, our work sets a new standard of practice: precision infection prevention (PIP). Ongoing effort is aimed at development of AI-powered capabilities for enterprise-level quality and safety improvement initiatives.
Funding: Philips Healthcare provided support for this study.
Disclosures: Alan Doty and Juan Jose Carmona report salary from Philips Healthcare.