We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Evaluate knowledge and beliefs about dietary nitrate among United Kingdom (UK)-based adults.
Design:
An online questionnaire was administered to evaluate knowledge and beliefs about dietary nitrate. Overall knowledge of dietary nitrate was quantified using a twenty-one-point Nitrate Knowledge Index. Responses were compared between socio-demographic groups.
Setting:
UK.
Participants:
A nationally representative sample of 300 adults.
Results:
Only 19 % of participants had heard of dietary nitrate prior to completing the questionnaire. Most participants (∼70 %) were unsure about the effects of dietary nitrate on health parameters (e.g. blood pressure, cognitive function and cancer risk) or exercise performance. Most participants were unsure of the average population intake (78 %) and acceptable daily intake (83 %) of nitrate. Knowledge of dietary sources of nitrate was generally low, with only ∼30 % of participants correctly identifying foods with higher or lower nitrate contents. Almost none of the participants had deliberately purchased, or avoided purchasing, a food based around its nitrate content. Nitrate Knowledge Index scores were generally low (median (interquartile range (IQR)): 5 (8)), but were significantly higher in individuals who were currently employed v. unemployed (median (IQR): 5 (7) v. 4 (7); P < 0·001), in those with previous nutrition education v. no nutrition education (median (IQR): 6 (7) v. 4 (8); P = 0·012) and in individuals who had heard of nitrate prior to completing the questionnaire v. those who had not (median (IQR): 9 (8) v. 4 (7); P < 0·001).
Conclusions:
This study demonstrates low knowledge around dietary nitrate in UK-based adults. Greater education around dietary nitrate may be valuable to help individuals make more informed decisions about their consumption of this compound.
Auditory verbal hallucinations (AVHs) in schizophrenia have been suggested to arise from failure of corollary discharge mechanisms to correctly predict and suppress self-initiated inner speech. However, it is unclear whether such dysfunction is related to motor preparation of inner speech during which sensorimotor predictions are formed. The contingent negative variation (CNV) is a slow-going negative event-related potential that occurs prior to executing an action. A recent meta-analysis has revealed a large effect for CNV blunting in schizophrenia. Given that inner speech, similar to overt speech, has been shown to be preceded by a CNV, the present study tested the notion that AVHs are associated with inner speech-specific motor preparation deficits.
Objectives
The present study aimed to provide a useful framework for directly testing the long-held idea that AVHs may be related to inner speech-specific CNV blunting in patients with schizophrenia. This may hold promise for a reliable biomarker of AVHs.
Methods
Hallucinating (n=52) and non-hallucinating (n=45) patients with schizophrenia, along with matched healthy controls (n=42), participated in a novel electroencephalographic (EEG) paradigm. In the Active condition, they were asked to imagine a single phoneme at a cue moment while, precisely at the same time, being presented with an auditory probe. In the Passive condition, they were asked to passively listen to the auditory probes. The amplitude of the CNV preceding the production of inner speech was examined.
Results
Healthy controls showed a larger CNV amplitude (p = .002, d = .50) in the Active compared to the Passive condition, replicating previous results of a CNV preceding inner speech. However, both patient groups did not show a difference between the two conditions (p > .05). Importantly, a repeated measure ANOVA revealed a significant interaction effect (p = .007, ηp2 = .05). Follow-up contrasts showed that healthy controls exhibited a larger CNV amplitude in the Active condition than both the hallucinating (p = .013, d = .52) and non-hallucinating patients (p < .001, d = .88). No difference was found between the two patient groups (p = .320, d = .20).
Conclusions
The results indicated that motor preparation of inner speech in schizophrenia was disrupted. While the production of inner speech resulted in a larger CNV than passive listening in healthy controls, which was indicative of the involvement of motor planning, patients exhibited markedly blunted motor preparatory activity to inner speech. This may reflect dysfunction in the formation of corollary discharges. Interestingly, the deficits did not differ between hallucinating and non-hallucinating patients. Future work is needed to elucidate the specificity of inner speech-specific motor preparation deficits with AVHs. Overall, this study provides evidence in support of atypical inner speech monitoring in schizophrenia.
Prior studies evaluating the impact of discontinuation of contact precautions (DcCP) on methicillin-resistant Staphylococcus aureus (MRSA) outcomes have characterized all healthcare-associated infections (HAIs) rather than those likely preventable by contact precautions. We aimed to analyze the impact of DcCP on the rate of MRSA HAI including transmission events identified through whole genome sequencing (WGS) surveillance.
Design:
Quasi experimental interrupted time series.
Setting:
Acute care medical center.
Participants:
Inpatients.
Methods:
The effect of DcCP (use of gowns and gloves) for encounters among patients with MRSA carriage was evaluated using time series analysis of MRSA HAI rates from January 2019 through December 2022, compared to WGS-defined attributable transmission events before and after DcCP in December 2020.
Results:
The MRSA HAI rate was 4.22/10,000 patient days before and 2.98/10,000 patient days after DcCP (incidence rate ratio [IRR] 0.71 [95% confidence interval 0.56–0.89]) with a significant immediate decrease (P = .001). There were 7 WGS-defined attributable transmission events before and 11 events after DcCP (incident rate ratio 0.90 [95% confidence interval 0.30–2.55]).
Conclusions:
DcCP did not result in an increase in MRSA HAI or, in WGS-defined attributable transmission events. Comprehensive analyses of the effect of transmission prevention measures should include outcomes specifically measuring transmission-associated HAI.
Preventing psychiatric admissions holds benefits for patients as well as healthcare systems. The Clinical Global Impression-Severity (CGI-S) scale is a 7-point measurement of symptom severity, independent of diagnosis, which has shown capability of predicting risk of hospitalisation in schizophrenia. Due to its routine use in clinical practice and ease of administration, it may have potential as a transdiagnostic predictor of hospitalisation.
Objectives
To investigate whether early trajectories of CGI-S scores predict risk of hospitalisation over a 6 month-follow-up period.
Methods
A retrospective cohort study was conducted, analysing Electronic Health Record (EHR) data from the NeuroBlu Database (Patel et al. BMJ Open 2022;12:e057227). Patients were included if they had a psychiatric diagnosis and at least 5 recorded CGI-S scores within a 2-month period, defined as the ‘index’ period. The relationship between early CGI-S trajectories and risk of hospitalisation was investigated using Cox regression. The analysis was adjusted for age, gender, race, number of years in education, and psychiatric diagnosis. Early CGI-S trajectories were estimated as clinical severity (defined as the mean CGI-S score during the index period) and clinical instability (defined as a generalised Root Mean Squared Subsequent Differences of all CGI-S scores recorded during the index period). The primary outcome was time to psychiatric hospitalisation up to 6 months following the index period. Patients who had been hospitalised before or within the index period were excluded.
Results
A total of 36,914 patients were included (mean [SD] age: 29.7 [17.5] years; 57.3% female). Clinical instability (hazard ratio: 1.09, 95% CI 1.07-1.10, p<0.001) and severity (hazard ratio: 1.11, 95% CI 1.09-1.12, p<0.001) independently predicted risk of hospitalisation. These associations were consistent across all psychiatric diagnoses. Patients in the top 50% of severity and/or instability were at a 45% increased risk of hospitalisation compared to those in the bottom 50% (Figure 1).
Image:
Conclusions
Early CGI-S trajectories reflecting clinical severity and instability independently predict risk of hospitalisation across diagnoses. This risk was compounded when instability and severity were present together. These results have translation potential in predicting individuals who are at high risk of hospitalisation and could benefit from preventative strategies to mitigate this risk.
Disclosure of Interest
E. Palmer Employee of: Holmusk, M. Taquet Consultant of: Holmusk, K. Griffiths Employee of: Holmusk, S. Ker Employee of: Holmusk, C. Liman Employee of: Holmusk, S. N. Wee Employee of: Holmusk, S. Kollins Employee of: Holmusk, R. Patel Grant / Research support from: National Institute of Health Research (NIHR301690); Medical Research Council (MR/S003118/1); Academy of Medical Sciences (SGL015/1020); Janssen, Employee of: Holmusk
We present the first unbiased survey of neutral hydrogen absorption in the Small Magellanic Cloud. The survey utilises pilot neutral hydrogen observations with the Australian Square Kilometre Array Pathfinder telescope as part of the Galactic Australian Square Kilometre Array Pathfinder neutral hydrogen project whose dataset has been processed with the Galactic Australian Square Kilometre Array Pathfinder-HI absorption pipeline, also described here. This dataset provides absorption spectra towards 229 continuum sources, a 275% increase in the number of continuum sources previously published in the Small Magellanic Cloud region, as well as an improvement in the quality of absorption spectra over previous surveys of the Small Magellanic Cloud. Our unbiased view, combined with the closely matched beam size between emission and absorption, reveals a lower cold gas faction (11%) than the 2019 ATCA survey of the Small Magellanic Cloud and is more representative of the Small Magellanic Cloud as a whole. We also find that the optical depth varies greatly between the Small Magellanic Cloud’s bar and wing regions. In the bar we find that the optical depth is generally low (correction factor to the optically thin column density assumption of
$\mathcal{R}_{\mathrm{HI}} \sim 1.04$
) but increases linearly with column density. In the wing however, there is a wide scatter in optical depth despite a tighter range of column densities.
We present the most sensitive and detailed view of the neutral hydrogen (
${\rm H\small I}$
) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal
${\rm H\small I}$
in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (
$1.6\,\mathrm{mJy\ beam}^{-1}$
)
$\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$
spectral channel with an angular resolution of
$30^{\prime\prime}$
(
${\sim}10\,\mathrm{pc}$
). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire
${\sim}25\,\mathrm{deg}^2$
field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes
${\rm H\small I}$
test observations.
In response to the requirements imposed by the COVID-19 pandemic in 2020, we developed a remote learning undergraduate workshop for 44 students at the University of Newcastle by embedding scanning electron microscope (SEM) images of Maratus (Peacock) spiders into the MyScope Explore environment. The workshop session had two main components: 1) to use the online MyScope Explore tool to virtually image scales with structural color and pigmented color on Maratus spiders; 2) to join a live SEM session via Zoom to image an actual Maratus spider. In previous years, the undergraduate university students attending this annual workshop would enter the Microscopy Facility at the University of Newcastle to image specimens with SEM; however, in 2020 the Microscopy Facility was closed to student visitors, and this virtual activity was developed in order to proceed with the educational event. The program was highly successful and constitutes a platform that can be used in the future by universities for teaching microscopy remotely.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to
$\sim\!5$
yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of
$\sim\!162$
h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of
$0.24\ \mathrm{mJy\ beam}^{-1}$
and angular resolution of
$12-20$
arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
Faraday complexity describes whether a spectropolarimetric observation has simple or complex magnetic structure. Quickly determining the Faraday complexity of a spectropolarimetric observation is important for processing large, polarised radio surveys. Finding simple sources lets us build rotation measure grids, and finding complex sources lets us follow these sources up with slower analysis techniques or further observations. We introduce five features that can be used to train simple, interpretable machine learning classifiers for estimating Faraday complexity. We train logistic regression and extreme gradient boosted tree classifiers on simulated polarised spectra using our features, analyse their behaviour, and demonstrate our features are effective for both simulated and real data. This is the first application of machine learning methods to real spectropolarimetry data. With 95% accuracy on simulated ASKAP data and 90% accuracy on simulated ATCA data, our method performs comparably to state-of-the-art convolutional neural networks while being simpler and easier to interpret. Logistic regression trained with our features behaves sensibly on real data and its outputs are useful for sorting polarised sources by apparent Faraday complexity.
We present the first Faraday rotation measure (RM) grid study of an individual low-mass cluster—the Fornax cluster—which is presently undergoing a series of mergers. Exploiting commissioning data for the POlarisation Sky Survey of the Universe’s Magnetism (POSSUM) covering a ${\sim}34$ square degree sky area using the Australian Square Kilometre Array Pathfinder (ASKAP), we achieve an RM grid density of ${\sim}25$ RMs per square degree from a 280-MHz band centred at 887 MHz, which is similar to expectations for forthcoming GHz-frequency ${\sim}3\pi$-steradian sky surveys. These data allow us to probe the extended magnetoionic structure of the cluster and its surroundings in unprecedented detail. We find that the scatter in the Faraday RM of confirmed background sources is increased by $16.8\pm2.4$ rad m−2 within 1$^\circ$ (360 kpc) projected distance to the cluster centre, which is 2–4 times larger than the spatial extent of the presently detectable X-ray-emitting intracluster medium (ICM). The mass of the Faraday-active plasma is larger than that of the X-ray-emitting ICM and exists in a density regime that broadly matches expectations for moderately dense components of the Warm-Hot Intergalactic Medium. We argue that forthcoming RM grids from both targeted and survey observations may be a singular probe of cosmic plasma in this regime. The morphology of the global Faraday depth enhancement is not uniform and isotropic but rather exhibits the classic morphology of an astrophysical bow shock on the southwest side of the main Fornax cluster, and an extended, swept-back wake on the northeastern side. Our favoured explanation for these phenomena is an ongoing merger between the main cluster and a subcluster to the southwest. The shock’s Mach angle and stand-off distance lead to a self-consistent transonic merger speed with Mach 1.06. The region hosting the Faraday depth enhancement also appears to show a decrement in both total and polarised radio emission compared to the broader field. We evaluate cosmic variance and free-free absorption by a pervasive cold dense gas surrounding NGC 1399 as possible causes but find both explanations unsatisfactory, warranting further observations. Generally, our study illustrates the scientific returns that can be expected from all-sky grids of discrete sources generated by forthcoming all-sky radio surveys.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
To evaluate broad-spectrum intravenous antibiotic use before and after the implementation of a revised febrile neutropenia management algorithm in a population of adults with hematologic malignancies.
Design:
Quasi-experimental study.
Setting and population:
Patients admitted between 2014 and 2018 to the Adult Malignant Hematology service of an acute-care hospital in the United States.
Methods:
Aggregate data for adult malignant hematology service were obtained for population-level antibiotic use: days of therapy (DOT), C. difficile infections, bacterial bloodstream infections, intensive care unit (ICU) length of stay, and in-hospital mortality. All rates are reported per 1,000 patient days before the implementation of an febrile neutropenia management algorithm (July 2014–May 2016) and after the intervention (June 2016–December 2018). These data were compared using interrupted time series analysis.
Results:
In total, 2,014 patients comprised 6,788 encounters and 89,612 patient days during the study period. Broad-spectrum intravenous (IV) antibiotic use decreased by 5.7% with immediate reductions in meropenem and vancomycin use by 22 (P = .02) and 15 (P = .001) DOT per 1,000 patient days, respectively. Bacterial bloodstream infection rates significantly increased following algorithm implementation. No differences were observed in the use of other antibiotics or safety outcomes including C. difficile infection, ICU length of stay, and in-hospital mortality.
Conclusions:
Reductions in vancomycin and meropenem were observed following the implementation of a more stringent febrile neutropenia management algorithm, without evidence of adverse outcomes. Successful implementation occurred through a collaborative effort and continues to be a core reinforcement strategy at our institution. Future studies evaluating patient-level data may identify further stewardship opportunities in this population.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.
There are no data relating to gambling advertisements shown during live sporting events in Ireland. The aim of the present study was to analyze gambling advertisements shown during live sporting events broadcast in Ireland and to assess these advertisements for responsible gambling (RG) practices.
Methods:
Sixty-five live televised sporting events comprising Association Football (soccer), Rugby Union, and Gaelic Athletic Association (GAA) matches broadcast in Ireland were analyzed. Pre-match (up to 30 minutes before kick-off), half-time, and post-match (up to 30 minutes after the match has ended) advertisement breaks were analyzed for gambling advertisements, including in-game fixed (static advertising) and dynamic (electronic advertisements changing at regular intervals) pitch-side advertising. Gambling advertisements were studied for evidence of RG practices.
Results:
A total of 3602 television advertisements, 618 dynamic advertisements, and 394 static advertisements were analyzed. Gambling advertisements were shown in 75.4% (n = 49) games and were the seventh most commonly televised advertisement shown overall. Gambling advertising was more common in football (fourth most common advertisement) compared to rugby (12th most common) and GAA (13th most common). Static and dynamic gambling advertising were common during football matches (second and first most common advertisements, respectively). The majority of advertisements contained RG messaging, an age limit, and an RG organization. No advertisements showing responsible gambling tools were observed.
Conclusions:
Gambling advertisements are commonly shown during live televised sporting broadcasts in Ireland, especially during live football matches and typically before the adult television watershed. Gambling legislation is required to minimize harm to vulnerable groups including children.
Reconstructing the provenance of siliciclastic marine sediment is important for understanding sediment pathways and constraining palaeoclimate and erosion records. However, physical fractionation of different size fractions can occur during sediment transport, potentially biasing records derived from bulk sediment. In this study, records of radiogenic Sr and Nd isotopic composition and K/Al ratio of the separated clay fraction, as well as bulk grain size, are presented, measured from deep-sea sediments recovered from International Ocean Discovery Program (IODP) Sites U1456 and U1457 in the Arabian Sea. These new records are compared with published bulk sediment records to investigate the influence of sediment transport on these proxies and to constrain provenance evolution and its relationship to climate variability since middle Miocene time. Correlations between grain size and the bulk sediment isotopic composition confirm that transport processes are influencing the bulk sediment record. This relationship, although present, is not as strong in the clay-fraction isotopic records. Heterogeneity of bulk sediment likely drives differences between bulk and clay records, thought to be largely controlled by sediment transport processes. The isotopic records reveal variations in provenance that correlate with climatic change at 8–7 Ma, as well as an increase in overall provenance variability beginning at c. 3.5 Ma, likely linked to monsoon strength and glacial–interglacial cycles. The clay-fraction records highlight the potential value of measuring proxy records from multiple size fractions to help constrain provenance records as well as investigate sediment transport and/or weathering and erosion processes recorded in deep-sea sediment archives.
The decontamination of hazardous chemical agents from porous media is an important and critical part of the clean-up operation following a chemical weapon attack. Decontamination is often achieved through the application of a cleanser, which reacts on contact with an agent to neutralise it. While it is relatively straightforward to write down a model that describes the interplay of the agent and cleanser on the scale of the pores in the porous medium, it is computationally expensive to solve such a model over realistic spill sizes.
In this paper, we consider the homogenisation of a pore-scale model for the interplay between agent and cleanser, with the aim of generating simplified models that can be solved more easily on the spill scale but accurately capture the microscale structure and chemical activity. We consider two situations: one in which the agent completely fills local porespaces and one in which it does not. In the case when the agent does not completely fill the porespace, we use established homogenisation techniques to systematically derive a reaction–diffusion model for the macroscale concentration of cleanser. However, in the case where the agent completely fills the porespace, the homogenisation procedure is more in-depth and involves a two-timescale approach coupled with a spatial boundary layer. The resulting homogenised model closely resembles the microscale model with the effect of the porous material being incorporated into the parameters. The two models cater for two different spill scenarios and provide the foundation for further study of reactive decontamination.
We develop a general model to describe a network of interconnected thin viscous sheets, or viscidas, which evolve under the action of surface tension. A junction between two viscidas is analysed by considering a single viscida containing a smoothed corner, where the centreline angle changes rapidly, and then considering the limit as the smoothing tends to zero. The analysis is generalized to derive a simple model for the behaviour at a junction between an arbitrary number of viscidas, which is then coupled to the governing equation for each viscida. We thus obtain a general theory, consisting of $N$ partial differential equations and $3J$ algebraic conservation laws, for a system of $N$ viscidas connected at $J$ junctions. This approach provides a framework to understand the fabrication of microstructured optical fibres containing closely spaced holes separated by interconnected thin viscous struts. We show sample solutions for simple networks with $J=2$ and $N=2$ or 3. We also demonstrate that there is no uniquely defined junction model to describe interconnections between viscidas of different thicknesses.
We derive a mathematical model for the drawing of a two-dimensional thin sheet of viscous fluid in the direction of gravity. If the gravitational field is sufficiently strong, then a portion of the sheet experiences a compressive stress and is thus unstable to transverse buckling. We analyse the dependence of the instability and the subsequent evolution on the process parameters, and the mutual coupling between the weakly nonlinear buckling and the stress profile in the sheet. Over long time scales, the sheet centreline ultimately adopts a universal profile, with the bulk of the sheet under tension and a single large bulge caused by a small compressive region near the bottom, and we derive a canonical inner problem that describes this behaviour. The large-time analysis involves a logarithmic asymptotic expansion, and we devise a hybrid asymptotic–numerical scheme that effectively sums the logarithmic series.
We consider the spreading of a thin viscous droplet, injected through a finite region of a substrate, under the influence of surface tension. We neglect gravity and assume that there is a precursor layer covering the whole substrate and that the rate of injection is constant. We analyse the evolution of the film profile for early and late time, and obtain power-law dependencies for the maximum film thickness at the centre of the injection region and the position of an apparent contact line, which compare well with numerical solutions of the full problem. We relax the conditions on the injection rate to consider more general time-dependent and spatially varying forms. In the case of power-law injection of the form $t^{k}$, we observe a switch in the behaviour of the evolution of the film thickness for late time from increasing to decreasing at a critical value of $k$. We show that point-source injection can be treated as a limiting case of a finite-injection slot and the solutions exhibit identical behaviours for late time. Finally, we formulate the problem with thickness-dependent injection rate, discuss the behaviour of the maximum film thickness and the position of the apparent contact line and give power-law dependencies for these.
Research on weed management in furrow-irrigated rice is needed as water availability becomes more limited in rice production regions of Arkansas. Research was conducted at Keiser and Pine Tree, AR, with the objectives being to determine (1) whether the addition of clomazone to imazethapyr would improve PRE weed control in furrow-irrigated, imidazolinone-tolerant rice, and (2) whether increasing the imazethapyr rates would improve weed control without injuring rice. Imazethapyr was applied at 70, 87.5, and 105 g ai/ha PRE with and without clomazone followed by imazethapyr POST at the same rate as used PRE. No rice injury was observed during the growing season at either site. Clomazone plus imazethapyr applied PRE did not improve early season control of Palmer amaranth, pitted morningglory, prickly sida, barnyardgrass, or broadleaf signalgrass over imazethapyr alone. Increasing the PRE imazethapyr rate to 105 g/ha did not improve Palmer amaranth or pitted morningglory control. Imazethapyr applied PRE on a clay soil generally provided lower weed control than on the silt loam soil. Increasing the imazethapyr rate did not improve rice yields.