We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Herbicides have been placed in global Herbicide Resistance Action Committee (HRAC) herbicide groups based on their sites of action (e.g., acetolactate synthase–inhibiting herbicides are grouped in HRAC Group 2). A major driving force for this classification system is that growers have been encouraged to rotate or mix herbicides from different HRAC groups to delay the evolution of herbicide-resistant weeds, because in theory, all active ingredients within a herbicide group physiologically affect weeds similarly. Although herbicide resistance in weeds has been studied for decades, recent research on the biochemical and molecular basis for resistance has demonstrated that patterns of cross-resistance are usually quite complicated and much more complex than merely stating, for example, a certain weed population is Group 2-resistant. The objective of this review article is to highlight and describe the intricacies associated with the magnitude of herbicide resistance and cross-resistance patterns that have resulted from myriad target-site and non–target site resistance mechanisms in weeds, as well as environmental and application timing influences. Our hope is this review will provide opportunities for students, growers, agronomists, ag retailers, regulatory personnel, and research scientists to better understand and realize that herbicide resistance in weeds is far more complicated than previously considered when based solely on HRAC groups. Furthermore, a comprehensive understanding of cross-resistance patterns among weed species and populations may assist in managing herbicide-resistant biotypes in the short term by providing growers with previously unconsidered effective control options. This knowledge may also inform agrochemical company efforts aimed at developing new resistance-breaking chemistries and herbicide mixtures. However, in the long term, nonchemical management strategies, including cultural, mechanical, and biological weed management tactics, must also be implemented to prevent or delay increasingly problematic issues with weed resistance to current and future herbicides.
Inadequate response to first- and second-line pharmacological treatments for psychiatric disorders is commonly observed. Ketamine has demonstrated efficacy in treating adults with treatment-resistant depression (TRD), with additional off-label benefits reported for various psychiatric disorders. Herein, we performed a systematic review and meta-analysis to examine the therapeutic applications of ketamine across multiple mental disorders, excluding mood disorders.
Methods
We conducted a multidatabase literature search of randomized controlled trials and open-label trials investigating the therapeutic use of ketamine in treating mental disorders. Studies utilizing the same psychological assessments for a given disorder were pooled using the generic inverse variance method to generate a pooled estimated mean difference.
Results
The search in OVID (MedLine, Embase, AMED, PsychINFO, JBI EBP Database), EBSCO CINAHL Plus, Scopus, and Web of Science yielded 44 studies. Ketamine had a statistically significant effect on PTSD Checklist for DSM-5 (PCL-5) scores (pooled estimate = ‒28.07, 95% CI = [‒40.05, ‒16.11], p < 0.001), Clinician-Administered PTSD Scale for DSM-5 (CAPS-5) scores (pooled estimate = ‒14.07, 95% CI = [‒26.24, ‒1.90], p = 0.023), and Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores (pooled estimate = ‒8.08, 95% CI = [‒13.64, ‒2.52], p = 0.004) in individuals with PTSD, treatment-resistant PTSD (TR-PTSD), and obsessive compulsive disorder (OCD), respectively. For alcohol use disorders and at-risk drinking, there was disproportionate reporting of decreased urge to drink, increased rate of abstinence, and longer time to relapse following ketamine treatment.
Conclusions
Extant literature supports the potential use of ketamine for the treatment of PTSD, OCD, and alcohol use disorders with significant improvement of patient symptoms. However, the limited number of randomized controlled trials underscores the need to further investigate the short- and long-term benefits and risks of ketamine for the treatment of psychiatric disorders.
This manuscript addresses a critical topic: navigating complexities of conducting clinical trials during a pandemic. Central to this discussion is engaging communities to ensure diverse participation. The manuscript elucidates deliberate strategies employed to recruit minority communities with poor social drivers of health for participation in COVID-19 trials. The paper adopts a descriptive approach, eschewing analysis of data-driven efficacy of these efforts, and instead provides a comprehensive account of strategies utilized. The Accelerate COVID-19 Treatment Interventions and Vaccines (ACTIV) public–private partnership launched early in the COVID-19 pandemic to develop clinical trials to advance SARS-CoV-2 treatments. In this paper, ACTIV investigators share challenges in conducting research during an evolving pandemic and approaches selected to engage communities when traditional strategies were infeasible. Lessons from this experience include importance of community representatives’ involvement early in study design and implementation and integration of well-developed public outreach and communication strategies with trial launch. Centralization and coordination of outreach will allow for efficient use of resources and the sharing of best practices. Insights gleaned from the ACTIV program, as outlined in this paper, shed light on effective strategies for involving communities in treatment trials amidst rapidly evolving public health emergencies. This underscores critical importance of community engagement initiatives well in advance of the pandemic.
Mental health apps (MHAs) are increasingly popular in India due to rising mental health awareness and app accessibility. Despite their benefits, like mood tracking, sleep tools and virtual therapy, MHAs lack regulatory oversight. India's framework, including the Central Drugs Standard Control Organization (CDSCO) and Medical Device Rules 2017, does not cover standalone health apps, raising concerns about data privacy and accuracy. Establishing a centralised regulatory body with guidelines for MHAs is essential for user safety and efficacy. This paper examines the current regulatory landscape, compares international approaches and proposes a tiered regulatory framework to foster responsible innovation while safeguarding user interests in digital mental health services.
Twelve lacustrine sediment samples from a relict lake in the Kalla Glacier valley were co-dated using AMS radiocarbon (14C) and infrared stimulated luminescence (IRSL) dating methods. In general, the radiocarbon ages of bulk organic matter were older by a minimum of 1500 years compared to (age depth) modeled luminescence ages after fading corrections. This is observed for the first time in the lake sediments of High Himalayan Crystalline zone. A combination of lipid n-alkane data, Raman spectra and geochemical proxies suggested that this was due to ancient organic carbon (OCancient) that is a mixture of pre-aged (OCpre-aged) and petrogenic (OCpetro) organic carbon within older glacial moraine debris that served as sediment source to the lake. Raman spectra suggest the presence of moderate to highly graphitized OCpetro in all the profile samples. The OCpetro contributed 0.064 ± 0.032% to the sediment and the lake stored 2.5 ± 0.7 Gg OCpetro at variable rates during the last 16 kyr, with the mean burial flux 160 kg OCpetro yr−1. This study implies (1) employing another independent dating method in addition to radiocarbon method using bulk sediment organic matter, if the carbon content is low, to observe any discrepancy, and (2) a need to investigate on the fate of OCpetro as many such small lakes become relict in this region.
Background: Duchenne muscular dystrophy (DMD) is caused by DMD gene mutations. Delandistrogene moxeparvovec is an investigational gene transfer therapy, developed to address the underlying cause of DMD. We report findings from Part 1 (52 weeks) of the two-part EMBARK trial (NCT05096221). Methods: Key inclusion criteria: Ambulatory patients aged ≥4-<8 years with a confirmed DMD mutation within exons 18–79 (inclusive); North Star Ambulatory Assessment (NSAA) score >16 and <29 at screening. Eligible patients were randomized 1:1 to intravenous delandistrogene moxeparvovec (1.33×1014 vg/kg) or placebo. The primary endpoint was change from baseline in NSAA total score to Week 52. Results: At Week 52 (n=125), the primary endpoint did not reach statistical significance, although there was a nominal difference in change from baseline in NSAA total score in the delandistrogene moxeparvovec (2.6, n=63) versus placebo groups (1.9, n=61). Key secondary endpoints (time to rise, micro-dystrophin expression, 10-meter walk/run) demonstrated treatment benefit in both age groups (4-5 and 6-7 years; p<0.05).There were no new safety signals, reinforcing the favorable and manageable safety profile observed to date. Conclusions: Based on the totality of functional assessments including the timed function tests, treatment with delandistrogene moxeparvovec indicates beneficial modification of disease trajectory.
The value of Source Data Verification (SDV) has been a common theme in the applied Clinical Translational Science literature. Yet, few published assessments of SDV quality exist even though they are needed to design risk-based and reduced monitoring schemes. This review was conducted to identify reports of SDV quality, with a specific focus on accuracy.
Methods:
A scoping review was conducted of the SDV and clinical trial monitoring literature to identify articles addressing SDV quality. Articles were systematically screened and summarized in terms of research design, SDV context, and reported measures.
Results:
The review found significant heterogeneity in underlying SDV methods, domains of SDV quality measured, the outcomes assessed, and the levels at which they were reported. This variability precluded comparison or pooling of results across the articles. No absolute measures of SDV accuracy were identified.
Conclusions:
A definitive and comprehensive characterization of SDV process accuracy was not found. Reducing the SDV without understanding the risk of critical findings going undetected, i.e., SDV sensitivity, is counter to recommendations in Good Clinical Practice and the principles of Quality by Design. Reference estimates (or methods to obtain estimates) of SDV accuracy are needed to confidently design risk-based, reduced SDV processes for clinical studies.
Changing practice patterns caused by the pandemic have created an urgent need for guidance in prescribing stimulants using telepsychiatry for attention-deficit hyperactivity disorder (ADHD). A notable spike in the prescribing of stimulants accompanied the suspension of the Ryan Haight Act, allowing the prescribing of stimulants without a face-to-face meeting. Competing forces both for and against prescribing ADHD stimulants by telepsychiatry have emerged, requiring guidelines to balance these factors. On the one hand, factors weighing in favor of increasing the availability of treatment for ADHD via telepsychiatry include enhanced access to care, reduction in the large number of untreated cases, and prevention of the known adverse outcomes of untreated ADHD. On the other hand, factors in favor of limiting telepsychiatry for ADHD include mitigating the possibility of exploiting telepsychiatry for profit or for misuse, abuse, and diversion of stimulants. This Expert Consensus Group has developed numerous specific guidelines and advocates for some flexibility in allowing telepsychiatry evaluations and treatment without an in-person evaluation to continue. These guidelines also recognize the need to give greater scrutiny to certain subpopulations, such as young adults without a prior diagnosis or treatment of ADHD who request immediate-release stimulants, which should increase the suspicion of possible medication diversion, misuse, or abuse. In such cases, nonstimulants, controlled-release stimulants, or psychosocial interventions should be prioritized. We encourage the use of outside informants to support the history, the use of rating scales, and having access to a hybrid model of both in-person and remote treatment.
Exploration of the 21cm signal during the Cosmic Dawn and the Epoch of Reionisation (EoR) can unravel the mysteries of the early Universe when the first stars and galaxies were born and ionised, respectively. However, the 21 cm signal is exceptionally weak, and thus, the detection amidst the bright foregrounds is extremely challenging. The Murchison Widefield Array (MWA) aims to measure the brightness temperature fluctuations of neutral hydrogen from the early Universe. The MWA telescope observes the radio sky with a large field of view (FoV) that causes the bright galaxies, especially near the horizon, to contaminate the measurements. These foregrounds contaminating the EoR datasets must be meticulously removed or treated to detect the signal successfully. The Central Redundant Array Mega-tile (CRAM) is a zenith-pointing new instrument, installed at the centre of the MWA Phase II southern hexagonal configuration, comprising of 64 dipoles in an $8 \times 8$ configuration with a FoV half the width of the MWA’s at every frequency under consideration. The primary objective of this new instrument is to mitigate the impact of bright radio sources near the field centre in accordance with the reduced primary beamshape and to reduce the contamination of foreground sources near the horizon with the reduced sidelobe response of the larger array configuration. In this paper, we introduce the new instrument to the community and present the system architecture and characteristics of the instrument. Using the first light observations, we determine the CRAM system temperature and system performance.
A survey for slug- and snail-associated nematodes was conducted in forests, parks, botanical gardens, and nature reserves at 13 localities in Belgium to uncover more diversity of gastropod mollusc-associated nematodes and to characterise Pellioditis populations found in the country. A total of 319 slugs and snails belonging to nine species were examined. Arion vulgaris was the most commonly found mollusc species in this study (eight locations), and 19.4% of the examined mollusc specimens were found infected by nematodes. The highest prevalence of nematodes was observed in Cornu aspersum (60%) followed by A. vulgaris (34.8%), Limax maximus (28.6%), and Cepaea sp. (20%). Eleven nematode species belonging to eight families were isolated and identified from the mollusc hosts including Alloionema appendiculatum, Angiostoma dentiferum, A. gandavense, Angiostrongylus vasorum, Cosmocerca longicauda, Panagrolaimus cf. subelongatus, Pellioditis californica, P. hermaphrodita, Rhabditis sp., Tetrameres cf. fissispina, and Troglostrongylus cf. brevior.Pellioditis was the most commonly found nematode genus (at nine localities) and C. longicauda and P. californica were reported in Belgium for the first time. Co-infections of more than one nematode species were observed in eight (2.5%) molluscs specimens. Most co-infections consisted of two nematode species. In one A. vulgaris specimen, a co-infection of three nematode species (A. vasorum, P. hermaphrodita, and Tetrameres cf. fissispina) was observed. Four ex vivo cultures of P. californica and six ex vivo cultures of P. hermaphrodita were established from single hermaphrodites, and both species were described based on light microscopy, scanning electron microscopy, and morphometric, morphological, and molecular data.
A total of 108 diverse sorghum (Sorghum bicolor) accessions were characterized for quantitative and qualitative fodder-related traits and zonate leaf spot (ZLS) (Gloeocercospora sorghi) disease during two successive wet seasons of 2019 and 2020 in augmented randomized block design. The Shannon's diversity index and analysis of variance showed the existence of significant variability among qualitative and quantitative traits. K-mean clustering showed strong relationship between green fodder yield (GFY) and other yield-contributing traits. The dendrogram constructed based on morphological traits classified accessions into four diverse groups and most of genotype fall under cluster II. The principal component analysis bi-plot analysis showed a total variation of 68.96%, where GFY, stem weight per plant, panicle length and dry matter yield (DMY) contributed significantly. From the experimental results, three sorghum genotypes viz., IG-03-424, IG-01-436 and IG-03-438 were identified as promising for higher GFY (808.66 g/plant) and DMY (238.0 g/plant), respectively. Further, based on disease reactions under natural condition, five genotypes viz., EC-512397, EC512393, EC512394, EC512399 and IG-02-437 were identified as potential donor for resistance to ZLS disease. These selected lines could be used as promising sources for high biomass and disease resistance in forage sorghum breeding programme.
We evaluated whether universal chlorhexidine bathing (decolonization) with or without COVID-19 intensive training impacted COVID-19 rates in 63 nursing homes (NHs) during the 2020–2021 Fall/Winter surge. Decolonization was associated with a 43% lesser rise in staff case-rates (P < .001) and a 52% lesser rise in resident case-rates (P < .001) versus control.
Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances. However, tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target irradiance. We describe several near-infrared, visible, ultraviolet and soft and hard X-ray diagnostics employed in a ∼1022 W/cm2 laser–plasma experiment. We used nearly 10 J total energy femtosecond laser pulses focused into an approximately 1.3-μm focal spot on 5–20 μm thick stainless-steel targets. We discuss the applicability of these diagnostics to determine the best in-focus target position with approximately 5 μm accuracy (i.e., around half of the short Rayleigh length) and show that several diagnostics (in particular, 3$\omega$ reflection and on-axis hard X-rays) can ensure this accuracy. We demonstrated target positioning within several micrometers from the focus, ensuring over 80% of the ideal peak laser intensity on-target. Our approach is relatively fast (it requires 10–20 laser shots) and does not rely on the coincidence of low-power and high-power focal planes.
The incorporation of transition metals into hematite may limit the aqueous concentration and bioavailabity of several important nutrients and toxic heavy metals. Before predicting how hematite controls metal-cation solubility, we must understand the mechanisms by which metal cations are incorporated into hematite. Thus, we have studied the mechanism for Ni2+ and Mn3+ uptake into hematite using extended X-ray absorption fine structures (EXAFS) spectroscopy. EXAFS measurements show that the coordination environment of Ni2+ in hematite corresponds to that resulting from Ni2+ replacing Fe3+. No evidence for NiO or Ni(OH)2 was found. The infrared spectrum of Ni-substituted hematite shows an OH-stretch band at 3168 cm−1 and Fe-OH bending modes at 892 and 796 cm−1. These vibrational bands are similar to those found in goethite. The results suggest that the substitution of Ni2+ for Fe3+ is coupled with the protonation of one of the hematite oxygen atoms to maintain charge balance.
The solubility of Mn3+ in hematite is much less extensive than that of Ni2+ because of the strong Jahn-Teller distortion of Mn3+ in six-fold coordination. Structural evidence of Mn3+ substituting for Fe3+ in hematite was found for a composition of 3.3 mole % Mn2O3. However a sample with nominally 6.6 mole % Mn2O3 was found to consist of two phases: hematite and ramsdellite (MnO2). The results indicate that for cations, such as Mn3+ showing a strong Jahn-Teller effect, there is limited substitution in hematite.
This investigation was carried out to study the effect of different concentrations of citric acid and glycine, which are common in freshwaters, on the kinetics of the adsorption of Hg by kaolinite under various pH conditions. The data indicate that Hg adsorption by kaolinite at different concentrations of citric acid and glycine obeyed multiple first order kinetics. In the absence of the organic acids, the rate constants of the initial fast process were 46 to 75 times faster than those of the slow adsorption process in the pH range of 4.00 to 8.00. Citric acid had a significant retarding effect on both the fast and slow adsorption process at pHs of 6.0 and 8.0. It had a significant promoting effect on the fast and slow adsorption process at pH 4.00. Glycine had a pronounced enhancing effect on the rate of Hg adsorption by kaolinite during the fast process. The rise in pH of the system further increased the effect of glycine on Hg adsorption. The magnitude of the retarding/promoting effect upon the rate of Hg adsorption was evidently dependent upon the pH, structure and functionality of organic acids, and molar ratio of the organic acid/Hg. The data obtained suggest that low-molecular-weight organic acids merit close attention in studying the kinetics and mechanisms of the binding of Hg by sediment particulates and the subsequent food chain contamination.
Silcretes developed within the in situ regolith in the Barr Smith Range, Western Australia, were investigated using optical and electron-beam techniques. One of the cementing agents in these silcretes showed gel-like optical properties and had a variable aluminosilicate chemical composition at the scale of electron microprobe analysis so that it might be considered as allophane-like material. High resolution transmission electron microscopy demonstrated that the material consists of a fine-grained and poorly ordered kaolinite embedded in a matrix of amorphous silica.
A quaternary ammonium and alcohol-based disinfectant with reported continuous activity demonstrated reduced microbial buildup on surfaces over time compared to routine disinfectants without continuous activity in in vitro and hospital studies. We compared these disinfectants in ambulatory settings and found no difference in bioburden on high-touch surfaces over time.