We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An essential aspect of carbon (C) accounting is the development of methods and technologies for measurement and monitoring of C pools and fluxes. Forest and agricultural systems are key to the C cycle, as they hold and rapidly exchange large amounts of C, and human-influenced dynamics of C in these systems are very large. Wetlands, streams, and rivers are important reservoirs and exchange points for C, with C in land and hydrologic systems vulnerable to land-use impacts and other natural disturbance forces. In the context of climate change, the sizes of C pools and magnitudes of C fluxes (see Chapter 2) need to be both well understood for modeling purposes and accurately monitored to quantify and attribute changes driven by land-change processes and confounded by climate-change forces.
Direct-measurement methods for C accounting, such as a ground-based inventories, can be inappropriate for covering large landscapes to document extensive C pools or for repeating measurements needed to adequately account for C dynamics. However, if properly deployed, remote sensing systems can be used to provide the spatially synoptic and temporally frequent coverage needed to document land conditions and changes over time (Cohen and Goward 2004; Houghton and Goetz 2008). Remote sensing tools and techniques have developed since the first airborne sensors (photographic cameras) were deployed in the early 1900s. They have progressed from simple passive recording devices to advanced passive and active sensing systems operating from airborne and spaceborne platforms. Remote sensing science includes the data collection technologies and data analysis techniques developed to use remotely sensed data within the framework of spatial data analyses.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.