We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With the rapid development of the national economy, the demand for electricity is also growing. Thermal power generation accounts for the highest proportion of power generation, and coal is the most commonly used combustion material. The massive combustion of coal has led to serious environmental pollution. It is significant to improve energy conversion efficiency and reduce pollutant emissions effectively. In this paper, an extreme learning machine model based on improved Kalman particle swarm optimization (ELM-IKPSO) is proposed to establish the boiler combustion model. The proposed modeling method is applied to the combustion modeling process of a 300 MWe pulverized coal boiler. The simulation results show that compared with the same type of modeling method, ELM-IKPSO can better predict the boiler thermal efficiency and NOx emission concentration and also show better generalization performance. Finally, multi-objective optimization is carried out on the established model, and a set of mutually non-dominated boiler combustion solutions is obtained.
Whole-genome sequencing (WGS) has shown tremendous potential in rapid diagnosis of drug-resistant tuberculosis (TB). In the current study, we performed WGS on drug-resistant Mycobacterium tuberculosis isolates obtained from Shanghai (n = 137) and Russia (n = 78). We aimed to characterise the underlying and high-frequency novel drug-resistance-conferring mutations, and also create valuable combinations of resistance mutations with high predictive sensitivity to predict multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) phenotype using a bootstrap method. Most strains belonged to L2.2, L4.2, L4.4, L4.5 and L4.8 lineages. We found that WGS could predict 82.07% of phenotypically drug-resistant domestic strains. The prediction sensitivity for rifampicin (RIF), isoniazid (INH), ethambutol (EMB), streptomycin (STR), ofloxacin (OFL), amikacin (AMK) and capreomycin (CAP) was 79.71%, 86.30%, 76.47%, 88.37%, 83.33%, 70.00% and 70.00%, respectively. The mutation combination with the highest sensitivity for MDR prediction was rpoB S450L + rpoB H445A/P + katG S315T + inhA I21T + inhA S94A, with a sensitivity of 92.17% (0.8615, 0.9646), and the mutation combination with highest sensitivity for XDR prediction was rpoB S450L + katG S315T + gyrA D94G + rrs A1401G, with a sensitivity of 92.86% (0.8158, 0.9796). The molecular information presented here will be of particular value for the rapid clinical detection of MDR- and XDR-TB isolates through laboratory diagnosis.
This study aimed to determine the risk factors for chronic diseases and to identify the potential influencing mechanisms from the perspectives of lifestyle and dietary factors. The findings could provide updated and innovative evidence for the prevention and control of chronic diseases.
Design:
A cross-sectional study.
Setting:
Shanghai, China.
Participants:
1005 adults from Yangpu district of Shanghai participated in the study, and responded to questions on dietary habits, lifestyle and health status.
Results:
Residents suffering from chronic diseases accounted for about 34·99 % of the respondents. Logistic regression analysis showed that age, diet quality, amount of exercise and tea drinking were related to chronic diseases. Age > 60 and overeating (Diet Balance Index total score > 0) had negative additive interaction on the occurrence of chronic disease, while overexercise (Physical Activity Index > 17·1) and tea drinking had negative multiplicative interaction and negative additive interaction on the occurrence of chronic disease. Diet quality, physical activity and tea drinking were incomplete mediators of the relationship between types of medical insurance residents participating in and chronic diseases.
Conclusions:
The residents in Yangpu District of Shanghai have a high prevalence of chronic diseases. Strengthening access of residents to health education and interventions to prevent chronic diseases and cultivating healthy eating and exercise habits of residents are crucial. The nutritional environment of the elderly population should be considered, and the reimbursement level of different types of medical insurance should be designed reasonably to improve the accessibility of medical and health services and reduce the risk of chronic diseases.
As a neuroprogressive illness, depression is accompanied by brain structural abnormality that extends to many brain regions. However, the progressive structural alteration pattern remains unknown.
Methods
To elaborate the progressive structural alteration of depression according to illness duration, we recruited 195 never-treated first-episode patients with depression and 130 healthy controls (HCs) undergoing T1-weighted MRI scans. Voxel-based morphometry method was adopted to measure gray matter volume (GMV) for each participant. Patients were first divided into three stages according to the length of illness duration, then we explored stage-specific GMV alterations and the causal effect relationship between them using causal structural covariance network (CaSCN) analysis.
Results
Overall, patients with depression presented stage-specific GMV alterations compared with HCs. Regions including the hippocampus, the thalamus and the ventral medial prefrontal cortex (vmPFC) presented GMV alteration at onset of illness. Then as the illness advanced, others regions began to present GMV alterations. These results suggested that GMV alteration originated from the hippocampus, the thalamus and vmPFC then expanded to other brain regions. The results of CaSCN analysis revealed that the hippocampus and the vmPFC corporately exerted causal effect on regions such as nucleus accumbens, the precuneus and the cerebellum. In addition, GMV alteration in the hippocampus was also potentially causally related to that in the dorsolateral frontal gyrus.
Conclusions
Consistent with the neuroprogressive hypothesis, our results reveal progressive morphological alteration originating from the vmPFC and the hippocampus and further elucidate possible details about disease progression of depression.
Chronic inflammation exerts pleiotropic effects in the aetiology and progression of chronic obstructive pulmonary disease (COPD). Glucosamine is widely used in many countries and may have anti-inflammatory properties. We aimed to prospectively evaluate the association of regular glucosamine use with incident COPD risk and explore whether such association could be modified by smoking in the UK Biobank cohort, which recruited more than half a million participants aged 40–69 years from across the UK between 2006 and 2010. Cox proportional hazards models with adjustment for potential confounding factors were used to calculate hazard ratios (HR) as well as 95 % CI for the risk of incident COPD. During a median follow-up of 8·96 years (interquartile range 8·29–9·53 years), 9016 new-onset events of COPD were documented. We found that the regular use of glucosamine was associated with a significantly lower risk of incident COPD with multivariable adjusted HR of 0·80 (95 % CI, 0·75, 0·85; P < 0·001). When subgroup analyses were performed by smoking status, the adjusted HR for the association of regular glucosamine use with incident COPD were 0·84 (0·73, 0·96), 0·84 (0·77, 0·92) and 0·71 (0·62, 0·80) among never smokers, former smokers and current smokers, respectively. No significant interaction was observed between glucosamine use and smoking status (Pfor interaction = 0·078). Incident COPD could be reduced by 14 % to 84 % through a combination of regular glucosamine use and smoking cessation.
To investigate the safety and feasibility of midazolam for conscious sedation in transcatheter device closure of atrial septal defects guided solely by transthoracic echocardiography.
Methods:
A retrospective analysis was performed on 55 patients who underwent transcatheter device closure of atrial septal defects from October, 2019 to May, 2020. All patients received intravenous midazolam and local anesthesia with lidocaine to maintain sedation. A group of previous patients with unpublished data who underwent the same procedure with general anesthesia was set as the control group. The relevant clinical parameters, the Ramsay sedation scores, the numerical rating scale, and the post-operative satisfaction questionnaire were recorded and analyzed.
Results:
In the midazolam group, the success rate of atrial septal defect closure was 98.2%. Hemodynamic stability was observed during the procedure. None of the patients needed additional endotracheal intubation for general anesthesia. Compared with the control group, the midazolam group had no statistically significant differences in the Ramsay sedation score and numerical rating scale scores. Patients in the midazolam group experienced more post-operative satisfaction than those in the control group.
Conclusions:
Conscious sedation using midazolam is a safe and effective anesthetic technique for transcatheter device closure of atrial septal defects guided solely by transthoracic echocardiography.
Engineered biomaterials provide unique functions to overcome the bottlenecks seen in biomedicine. Hence, a technique for rapid and routine tests of collagen is required, in which the test items commonly include molecular weight, crosslinking degree, purity, and sterilization induced structural change. Among them, the crosslinking degree mainly influences collagen properties. In this study, second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy are used in combination to explore the collagen structure at molecular and macromolecular scales. These measured parameters are applied for the classification and quantification among the different collagen scaffolds, which were verified by other conventional methods. It is demonstrated that the crosslinking status can be analyzed from SHG images and presented as the coherency of collagen organization that is correlated with the mechanical properties. Also, the comparative analyses of SHG signal and relative CARS signal of amide III band at 1,240 cm−1 to δCH2 band at 1,450 cm−1 of these samples provide information regarding the variation of the molecular structure during a crosslinking process, thus serving as nonlinear optical signatures to indicate a successful crosslinking.
Internet gaming disorder (IGD) is a type of behavioural addictions. One of the key features of addiction is the excessive exposure to addictive objectives (e.g. drugs) reduces the sensitivity of the brain reward system to daily rewards (e.g. money). This is thought to be mediated via the signals expressed as dopaminergic reward prediction error (RPE). Emerging evidence highlights blunted RPE signals in drug addictions. However, no study has examined whether IGD also involves alterations in RPE signals that are observed in other types of addictions.
Methods
To fill this gap, we used functional magnetic resonance imaging data from 45 IGD and 42 healthy controls (HCs) during a reward-related prediction-error task and utilised a psychophysiological interaction (PPI) analysis to characterise the underlying neural correlates of RPE and related functional connectivity.
Results
Relative to HCs, IGD individuals showed impaired reinforcement learning, blunted RPE signals in multiple regions of the brain reward system, including the right caudate, left orbitofrontal cortex (OFC), and right dorsolateral prefrontal cortex (DLPFC). Moreover, the PPI analysis revealed a pattern of hyperconnectivity between the right caudate, right putamen, bilateral DLPFC, and right dorsal anterior cingulate cortex (dACC) in the IGD group. Finally, linear regression suggested that the connection between the right DLPFC and right dACC could significantly predict the variation of RPE signals in the left OFC.
Conclusions
These results highlight disrupted RPE signalling and hyperconnectivity between regions of the brain reward system in IGD. Reinforcement learning deficits may be crucial underlying characteristics of IGD pathophysiology.
Attention-deficit/hyperactivity disorder (ADHD) is associated with a higher risk of burn injury than in the normal population. Nevertheless, the influence of methylphenidate (MPH) on the risk of burn injury remains unclear. This retrospective cohort study analysed the effect of MPH on the risk of burn injury in children with ADHD.
Method
Data were from Taiwan's National Health Insurance Research Database (NHIRD). The sample comprised individuals younger than 18 years with a diagnosis of ADHD (n = 90 634) in Taiwan's NHIRD between January 1996 and December 2013. We examined the cumulative effect of MPH on burn injury risk using Cox proportional hazards models. We conducted a sensitivity analysis for immortal time bias using a time-dependent Cox model and within-patient comparisons using the self-controlled case series model.
Results
Children with ADHD taking MPH had a reduced risk of burn injury, with a cumulative duration of treatment dose-related effect, compared with those not taking MPH. Compared with children with ADHD not taking MPH, the adjusted hazard ratio for burn injury was 0.70 in children taking MPH for <90 days (95% confidence interval (CI) 0.64–0.77) and 0.43 in children taking MPH for ≥90 days (95% CI 0.40–0.47), with a 50.8% preventable fraction. The negative association of MPH was replicated in age-stratified analysis using time-dependent Cox regression and self-controlled case series models.
Conclusion
This study showed that MPH treatment was associated with a lower risk of burn injury in a cumulative duration of treatment dose-related effect manner.
From 21 January 2020 to 9 February 2020, three family clusters involving 31 patients with coronavirus disease 2019 were identified in Wenzhou, China. The epidemiological and clinical characteristics of the family cluster patients were analysed and compared with those of 43 contemporaneous sporadic cases. The three index cases transmitted the infection to 28 family members 2–10 days before illness onset. Overall, 28 of the 41 sporadic cases and three of 31 patients in the family clusters came back from Wuhan (65.12 vs. 9.68%, P< 0.001). In terms of epidemiological characters and clinical symptoms, no significant differences were observed between the family cluster and sporadic cases. However, the lymphocyte counts of sporadic cases were significantly lower than those of family cluster cases ((1.32 ± 0.55) × 109/l vs. (1.63 ± 0.70) × 109/l, P = 0.037), and the proportion of hypoalbuminaemia was higher in sporadic cases (18/43, 41.86%) than in the family clusters (6/31, 19.35%) (P < 0.05). Within the family cluster, the second- and third-generation cases had milder clinical manifestations, without severe conditions, compared with the index and first-generation cases, indicating that the virulence gradually decreased following passage through generations within the family clusters. Close surveillance, timely recognition and isolation of the suspected or latent patient is crucial in preventing family cluster infection.
Indoor positioning systems have received increasing attention for supporting location-based services in indoor environments. Wi-Fi based indoor localisation has become attractive due to its extensive distribution and low cost properties. IEEE 802.11-2016 now includes a Wi-Fi Fine Time Measurement (FTM) protocol which can be used for Wi-Fi ranging between intelligent terminal and Wi-Fi access point. This paper introduces a framework of Wi-Fi FTM data acquisition and processing that can be used for indoor localisation. We analyse the main factors that affect the accuracy of Wi-Fi ranging and propose a calibration, filtering and modelling algorithm that can effectively reduce the ranging error caused by clock deviation, non-line-of-sight (NLOS) and multipath propagation. Experimental results show that the proposed calibration and filtering method is able to achieve metre-level ranging accuracy in case of line-of-sight by using large bandwidth. Estimation results also show that the proposed Wi-Fi ranging model provides an accurate ranging performance in NLOS and multipath contained indoor environment; the final positioning error is less than 2·2 m with a stable output frequency of 3 Hz.
The excessive use of plastic, especially polystyrene (PS), has caused serious environmental pollution. The efficient utilization of plastics and the conversion of plastics into value-added carbon materials are the concerns of researchers. Herein, we propose novel “pyrolysis–deposition” method to convert one popular plastic substance, PS, into ordered mesoporous carbons (OMCs). During the synthesis process, PS is pyrolyzed into small organic gases under high temperature, which is then adsorbed through capillary adsorption into the mesoporous of SBA-15 in the presence of catalyst. The obtained OMCs have high specific surface area, uniform pore size, and ordered pore structure. The OMCs exhibit specific capacitance of 118 F/g at a current density of 0.2 A/g and electrochemical stability of 87.2% at a current density of 2 A/g after 5000 cycles. The pyrolysis–deposition strategy provides a new idea to convert waste plastics into high-performance carbon materials for electrochemical applications.
Minimally invasive surgery is a developing direction of modern medicine. With the successful development of controllable capsule endoscopies, capsule robots are very popular in the field of gastrointestinal medicine. At present, the study of intestinal robots is aimed at the pipeline environment of a single-phase liquid flow. But there exist food residues (i.e. solid particles) or liquid foods in the actual intestine, so intestinal fluid should be liquid–solid or liquid–liquid two-phase mixed fluid. For inner spiral capsule robots with different internal diameters and outer spiral capsule robots, using computational fluid dynamics (CFD) method, the operational performance indicators (i.e. axial thrust force, circumferential resisting moment and maximum pressure to pipeline wall) of spiral capsule robots are numerically calculated in the liquid–solid or liquid–liquid two-phase mixed fluid. By the orthogonal experimental optimization method, the optimum design of spiral capsule robots is obtained in the liquid–solid mixed fluid. The experimental verification has been also carried out. The results show that in the liquid–solid two-phase fluid, the axial thrust force and circumferential resisting moment of the spiral capsule robots decrease with the increase of the size or concentration of solid particles. In the same liquid–solid or liquid–liquid mixed fluid, the operational performance indicators of outer spiral robots are much higher than those of inner spiral robots, and the operational performance indicators of inner spiral robots with bigger internal diameters are higher than those with smaller internal diameters. Adding solid particles of high concentration in the pipeline containing liquid will reduce the drive performance of spiral capsule robots, but adding another liquid of high viscosity will improve the drive performance of spiral capsule robots.
Fermented soybean meal (FSM), which has lower anti-nutritional factors and higher active enzyme, probiotic and oligosaccharide contents than its unfermented form, has been reported to improve the feeding value of soybean meal, and hence, the growth performance of piglets. However, whether FSM can affect the bacterial and metabolites in the large intestine of piglets remains unknown. This study supplemented wet-FSM (WFSM) or dry-FSM (DFSM) (5% dry matter basis) in the diet of piglets and investigated its effects on carbon and nitrogen metabolism in the piglets’ large intestines. A total of 75 41-day-old Duroc×Landrace×Yorkshire piglets with an initial BW of 13.14±0.22 kg were used in a 4-week feeding trial. Our results showed that the average daily gain of piglets in the WFSM and DFSM groups increased by 27.08% and 14.58% and that the feed conversion ratio improved by 18.18% and 7.27%, respectively, compared with the control group. Data from the prediction gene function of Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) based on 16S ribosomal RNA (rRNA) sequencing showed that carbohydrate metabolism function families in the WFSM and DFSM groups increased by 3.46% and 2.68% and that the amino acid metabolism function families decreased by 1.74% and 0.82%, respectively, compared with the control group. These results were consistent with those of other metabolism studies, which showed that dietary supplementation with WFSM and DFSM increased the level of carbohydrate-related metabolites (e.g. 4-aminobutanoate, 5-aminopentanoate, lactic acid, mannitol, threitol and β-alanine) and decreased the levels of those related to protein catabolism (e.g. 1,3-diaminopropane, creatine, glycine and inosine). In conclusion, supplementation with the two forms of FSM improved growth performance, increased metabolites of carbohydrate and reduced metabolites of protein in the large intestine of piglets, and WFSM exhibited a stronger effect than DFSM.
The metamorphic responses of mussel (Mytilus coruscus) larvae to pharmacological agents affecting G proteins and the adenylate cyclase/cyclic AMP (AC/cAMP) pathway were examined in the laboratory. The G protein activators guanosine 5′-[β,γ-imido]triphosphate trisodium salt hydrate and guanosine 5′-[γ-thio]triphosphate tetralithium salt only induced larval metamorphosis in continuous exposure assays, and the G protein inhibitor guanosine 5′-[β-thio]diphosphate trilithium salt did not exhibit inducing activity. The non-specific phosphodiesterase inhibitor theophylline and the cAMP-specific phosphodiesterase IV inhibitor 4-(3-Butoxy-4-methoxybenzyl)imidazolidin-2-one exhibited inducing activity, while the non-specific phosphodiesterase inhibitor 3-Isobutyl-1-methylxanthine only showed inducing activity at 10−4 M in continuous exposure assays. The cyclic nucleotide analogue N6,2′-O-Dibutyryladenosine 3′,5′-cyclic monophosphate sodium salt did not exhibit significant inducing activity. Both the adenylate cyclase activator forskolin and the adenylate cyclase inhibitor nitroimidazole exhibited inducing activity at 10−4 to 10−3 M concentrations in continuous exposure assays. Among these tested agents, the adenylate cyclase inhibitor (±)-miconazole nitrate salt showed the most promising inducing effect. The present results indicate that G protein-coupled receptors and signal transduction by AC/cAMP pathway could mediate metamorphosis of larvae in this species.
Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.
The effect of solution treatment (ST) on the microstructure and mechanical properties of cast Al–3Li–1.5Cu–0.2Zr alloy was investigated. Results showed that the volume fraction of secondary phases (Al2Cu, Al3Li) decreased obviously after ST. It was found that the strengthening of Al–3Li–1.5Cu–0.2Zr alloy was a balance of the precipitation strengthening, residual phase strengthening and fine grain strengthening. The residual phase strengthening and fine grain strengthening decreased with increasing the solution temperature and time, while precipitation strengthening increased. After ST at 560 °C for 40 h, the elongation of Al–3Li–1.5Cu–0.2Zr alloy reaches the highest value of 22.1%. In addition, the tensile properties are up to the highest values, ultimate tensile strength of 359 MPa and elongation of 3.5% after optimal ST at 560 °C for 40 h followed by aging treatment.
The effect of 0.5 wt% Mn addition on the microstructure and mechanical properties of cast Al–2Li–2Cu–0.8Mg–0.4Zn–0.2Zr (wt%) alloy was investigated. Results showed that the grain size of Mn-containing alloy was smaller than that of Mn-free alloy in both the as-cast and solution treated state. Al20Mn3Cu2 dispersoids were formed during solution treatment in the Mn-containing alloy. After aging at 175 °C for 32 h, a large volume fraction of coherent Al3Li/Al3(Li, Zr) particles were precipitated in both Mn-free and Mn-containing alloys, while more Guinier–Preston–Bagaratsky zones were observed in the Mn-free alloy. Mn addition improved the elongation significantly, which was 1.7% for Mn-free alloy and 3.3% for the alloy with 0.5 wt% Mn addition.