We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recently, the nature of viscoelastic drag-reducing turbulence (DRT), especially the maximum drag reduction (MDR) state, has become a focus of controversy. It has long been regarded as polymer-modulated inertial turbulence (IT), but is challenged by the newly proposed concept of elasto-inertial turbulence (EIT). This study is to repicture DRT in parallel plane channels by introducing dynamics of EIT through statistical, structural and budget analysis for a series of flow regimes from the onset of drag reduction to EIT. Some underlying mechanistic links between DRT and EIT are revealed. Energy conversion between velocity fluctuations and polymers as well as pressure redistribution effects are of particular concern, based on which a new energy self-sustaining process (SSP) of DRT is repictured. The numerical results indicate that at low Reynolds number ($Re$), weak IT flow is replaced by a laminar regime before the barrier of EIT dynamics is established with the increase of elasticity, whereas, at moderate $Re$, EIT-related SSP can get involved and survive from being relaminarized. This further explains the reason why relaminarization phenomenon is observed for low $Re$ while the flow directly enters MDR and EIT at moderate $Re$. Moreover, with the proposed energy picture, the newly discovered phenomenon that streamwise velocity fluctuations lag behind those in the wall-normal direction can be well explained. The repictured SSP certainly justifies the conjecture that IT nature is gradually replaced by that of EIT in DRT with the increase of elasticity.
To compare the prevalence of overweight or obesity (ow/ob) with WHO BMI cut-off points, International Obesity Task Force (IOTF) cut-off points and Chinese BMI criteria and examine its potential factors among preschool children in Hunan Province.
Design:
A cross-sectional survey including anthropometric measurements and questionnaires about children’s information, caregivers’ socio-demographic characteristics and maternal characteristics. χ2 tests and univariate and multivariate binary logistic regression were performed to evaluate the possible factors of ow/ob.
Setting:
Hunan, China, from September to October 2019.
Participants:
In total, 7664 children 2 to 6 years of age.
Results:
According to Chinese BMI criteria, about 1 in 7–8 children aged 2–6 years had ow/ob in Hunan, China. The overall estimated prevalence of ow/ob among 2- to 6-year-old children was significantly higher when based on the Chinese BMI criteria compared with the WHO BMI cut-off points and IOTF cut-off points. According to Chinese BMI criteria, ow/ob was associated with residing in urban areas, older age, male sex, eating snacking food more frequently, macrosomia delivery, caesarean birth, heavier maternal prepregnancy weight and pre-delivery weight.
Conclusion:
The prevalence of ow/ob in preschool children in Hunan Province remains high. More ow/ob children could be screened out according to Chinese BMI cut-offs compared with WHO and IOTF BMI criteria. In the future, targeted intervention studies with matched controls will be needed to assess the long-term effects of intervention measures to provide more information for childhood obesity prevention and treatment.
The present study evaluated whether fat mass assessment using the triceps skinfold (TSF) thickness provides additional prognostic value to the Global Leadership Initiative on Malnutrition (GLIM) framework in patients with lung cancer (LC). We performed an observational cohort study including 2672 LC patients in China. Comprehensive demographic, disease and nutritional characteristics were collected. Malnutrition was retrospectively defined using the GLIM criteria, and optimal stratification was used to determine the best thresholds for the TSF. The associations of malnutrition and TSF categories with survival were estimated independently and jointly by calculating multivariable-adjusted hazard ratios (HR). Malnutrition was identified in 808 (30·2 %) patients, and the best TSF thresholds were 9·5 mm in men and 12 mm in women. Accordingly, 496 (18·6 %) patients were identified as having a low TSF. Patients with concurrent malnutrition and a low TSF had a 54 % (HR = 1·54, 95 % CI = 1·25, 1·88) greater death hazard compared with well-nourished individuals, which was also greater compared with malnourished patients with a normal TSF (HR = 1·23, 95 % CI = 1·06, 1·43) or malnourished patients without TSF assessment (HR = 1·31, 95 % CI = 1·14, 1·50). These associations were concentrated among those patients with adequate muscle mass (as indicated by the calf circumference). Additional fat mass assessment using the TSF enhances the prognostic value of the GLIM criteria. Using the population-derived thresholds for the TSF may provide significant prognostic value when used in combination with the GLIM criteria to guide strategies to optimise the long-term outcomes in patients with LC.
Environmental hypoxia exposure causes fertility problems in human and animals. Compelling evidence suggests that chronic hypoxia impairs spermatogenesis and reduces sperm motility. However, it is unclear whether paternal hypoxic exposure affects fertilization and early embryo development. In the present study, we exposed male mice to high altitude (3200 m above sea level) for 7 or 60 days to evaluate the effects of hypoxia on sperm quality, zygotic DNA methylation and blastocyst formation. Compared with age-matched controls, hypoxia-treated males exhibited reduced fertility after mating with normoxic females as a result of defects in sperm motility and function. Results of in vitro fertilization (IVF) experiments revealed that 60 days’ exposure significantly reduced cleavage and blastocyst rates by 30% and 70%, respectively. Immunohistochemical staining of pronuclear formation indicated that the pronuclear formation process was disturbed and expression of imprinted genes was reduced in early embryos after paternal hypoxia. Overall, the findings of this study suggested that exposing male mice to hypoxia impaired sperm function and affected key events during early embryo development in mammals.
A series of new synthetic armored cables were developed and tested to ensure that they were suitable for use with the RECoverable Autonomous Sonde (RECAS), which is a newly designed freezing-in thermal ice probe. The final version of the cable consists of two concentric conductors that can be used as the power and signal lines. Two polyfluoroalkoxy jackets are used for electrical insulation (one for insulation between conductors, and the other for insulation of the outer conductor). The outer insulation layer is coated by polyurethane jacket to seal the connections between the cable and electrical units. The 0.65 mm thick strength member is made from aramid fibers woven together. To hold these aramid fibers in place, a sheathing layer was produced from a polyamide fabric cover net. The outer diameter of the final version of the cable is ~6.1 mm. The permissible bending radius is as low as 17–20 mm. The maximal breaking force under straight tension is ~12.2 kN. The cable weight is only ~0.061 kg m−1. The mechanical and electrical properties and environmental suitability of the cable were determined through laboratory testing and joint testing with the probe.
Shifts in the maternal gut microbiota have been implicated in the development of gestational diabetes mellitus (GDM). Understanding the interaction between gut microbiota and host glucose metabolism will provide a new target of prediction and treatment. In this nested case-control study, we aimed to investigate the causal effects of gut microbiota from GDM patients on the glucose metabolism of germ-free (GF) mice. Stool and peripheral blood samples, as well as clinical information, were collected from 45 GDM patients and 45 healthy controls (matched by age and prepregnancy body mass index (BMI)) in the first and second trimester. Gut microbiota profiles were explored by next-generation sequencing of the 16S rRNA gene, and inflammatory factors in peripheral blood were analyzed by enzyme-linked immunosorbent assay. Fecal samples from GDM and non-GDM donors were transferred to GF mice. The gut microbiota of women with GDM showed reduced richness, specifically decreased Bacteroides and Akkermansia, as well as increased Faecalibacterium. The relative abundance of Akkermansia was negatively associated with blood glucose levels, and the relative abundance of Faecalibacterium was positively related to inflammatory factor concentrations. The transfer of fecal microbiota from GDM and non-GDM donors to GF mice resulted in different gut microbiota colonization patterns, and hyperglycemia was induced in mice that received GDM donor microbiota. These results suggested that the shifting pattern of gut microbiota in GDM patients contributed to disease pathogenesis.
Rare earth elements (REE) in marine minerals have been widely used as proxies for the redox status of depositional and/or diagenetic environments. Phosphate nodules, which are thought to grow within decimetres below the sediment–water interface and to be able to scavenge REE from the ambient pore water, are potential archives of subtle changes in REE compositions. Whether their REE signals represent specific redox conditions or they can be used to track the overlying water chemistry is worth exploring. Through in situ laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS), we investigate the REE compositions of a drill-core-preserved phosphate nodule from the lower Cambrian Niutitang Formation in the Daotuo area, northeastern Guizhou Province, South China. REE distributions of the nodule show concentric layers with systematic decreases in Ce anomalies (Ce/Ce*) from the core to the rim. The lowest Ce/Ce* appears in the outer rim where REE concentrations are relatively high. These results are interpreted to reflect REE exchange with pore water at a very early stage or bathymetric variation during apatite precipitation. The origin of the shale-normalized middle REE (MREE) enrichment in our sample is less constrained. Possible driving factors include preferential MREE substitution for Ca in the apatite lattice, degradation of organic matter and deposition beneath a ferruginous zone. Although speculative, the last possibility is consistent with the chemically stratified model for early Cambrian oceans, in which dynamic fluctuations of the chemocline provided an ideal depositional context for phosphogenesis.
To investigate homocysteine (Hcy) and folate levels, prevalence of hyperhomocysteinaemia (HHcy) and folate deficiency, which are affected by lifestyles in urban, agricultural and stock-raising populations.
Design:
This is a cross-sectional study.
Setting:
Urban, agricultural and stock-raising regions in Emin, China.
Participants:
Totally 1926 subjects – 885 (45·9 %) from urban, 861 (44·7 %) from agricultural and 180 (9·4 %) from stock-raising regions – were obtained using multistage stratified random sampling. Inclusion criteria encompassed inhabitants aged ≥15 years who resided at the current address for ≥6 months and agreed to participate in the study. Surveys on health behaviour questionnaires and physical examinations were conducted and blood samples collected.
Results:
The folate level of subjects from the stock-raising region was the lowest, followed by those from the agricultural region, and the highest in those from the urban region (3·48 v. 6·50 v. 7·12 ng/ml, P < 0·001), whereas mean Hcy showed no significant difference across regions. The OR for HHcy in stock-raising regions was 1·90 (95 % CI 1·11, 3·27) compared with the urban region after adjusting for all possible covariates. The OR for folate deficiency in stock-raising and agriculture regions was 11·51 (95 % CI 7·09, 18·67) and 1·91 (95 % CI 1·30, 2·82), respectively, compared with the urban region after adjusting for all possible covariates.
Conclusions:
HHcy and folate deficiency are highly prevalent in stock-raisers, which is of important reference for HHcy control in Xinjiang, with a possibility of extension to others with approximate lifestyles.
A new fast-growing mycobacterium, designated strain QGD101T, was isolated from the sputum of an 84-year-old man suspected of tuberculosis in Wuhan Medical Treatment Center, Hubei, China. This strain was a gram-staining-negative, aerobic, non-spore-forming and catalase-positive bacterium, which was further identified as the NTM by PNB and TCH tests. The moxifloxacin and levofloxacin exhibited strong suppressing function against QGD101T with MIC values of 0.06 and 0.125 µg/ml after drug susceptibility testing of six main antimicrobial agents on mycobacteria. Based on the sequence analysis of 16S rRNA, rpoB, hsp65 and 16S-23S rRNA internal transcribed spacer, the strain QGD101T could not be identified to a species level. Mycobacterium moriokaense ATCC43059T that shared the highest 16S rRNA gene sequence similarity (98%) with strain QGD101T was actually different in genomes average nucleotide identity (78.74%). In addition, the major cellular fatty acids of QGD101T were determined as C18:1ω9c, C16:0 and C18:2ω6c. The DNA G + C content was 64.9% measured by high performance liquid chromatography. Therefore, the phenotypic and genotypic characterisation of this strain led us to the conclusion that it represents a novel species of mycobacteria, for which the name Mycobacterium hubeiense sp. nov. (type strain QGD101T = CCTCCAA 2017003T = KCTC39927T) was proposed. Thus, the results of this study are very significant for the clinical diagnosis of tuberculosis and future personalised medicine.
Previous studies of amyloid diseases reported that the aggregating proteins share a similar conserved peptide sequence which can form the cross-β-sheet-containing nanostructures like nanofilaments. The template-assisted self-assembly (TASA) of peptides on inorganic substrates with different hydrophilicity could be an alternative approach to shed light on the fibrillization mechanism of proteins/peptides in vivo. To figure out the effect of interfaces on amyloid aggregation, we herein employed in situ atomic force microscopy (AFM) to investigate the self-assembling of a Parkinson disease-related core peptide sequence (TGV-9) on a hydrophobic liquid–solid interface via real-time observation of the dynamic fibrillization process. The results show that TGV-9 forms one-dimensional nanostructures on the surface of highly ordered pyrolytic graphite (HOPG) with three preferred growth orientations, which are consistent with the atomic lattice of HOPG, indicating an epitaxial growth or TASA. Conversely, the nanostructures formed in bulk solution can be free-standing nanofilaments, and the fibrillization mechanism is different from that on HOPG. These results could not only deepen the understanding of the protein/peptide aggregation mechanism but also benefit for the early diagnosis and clinic treatment of related diseases.
Biodegradable poly(lactide acid) (PLA) has been well-studied as a shape memory polymer in recent years, but the brittleness and relatively high Tg limit its applications. In this study, a series of PLA/poly(ethylene glycol) (PEG) blends were manufactured by using the solvent evaporation method. The thermal behaviors, morphology, hydrophilicity, and mechanical properties of the samples with different contents of PEG have been experimentally studied by differential scanning calorimetry, scanning electronic microscopy, water contact angle, dynamic mechanical analysis, and tensile test. Furthermore, the influence of PEG on the shape memory properties under different loading conditions including the stretch strain, recovery temperature, deformation temperature, and tensile rate were explored systematically. Experimental results reveal that introduction of appropriate contents of the plasticizer PEG into the PLA/PEG systems results in the significant improvement of morphology, hydrophilicity, and mechanical properties while the high shape memory properties are still retained.
In this paper, we first construct π-type Fermions. According to these, we define π-type Boson–Fermion correspondence which is a generalization of the classical Boson–Fermion correspondence. We can obtain π-type symmetric functions Sλπ from the π-type Boson–Fermion correspondence, analogously to the way we get the Schur functions Sλ from the classical Boson–Fermion correspondence (which is the same thing as the Jacobi–Trudi formula). Then as a generalization of KP hierarchy, we construct the π-type KP hierarchy and obtain its tau functions.
The influence of the content of trifluoroacetate (TFA), in the precursor solution, on the critical current density (Jc) of YBa2Cu3O7−x (YBCO) superconducting films was investigated. We found that a TFA/Ba ratio of 0.68 is optimal to obtain high-performance YBCO films. Using this optimal solution, we then developed an ultraviolet (UV) light soaking technique to prepare YBCO films. This resulted in the constituent elements being uniformly distributed in the films, and this then enabled enhanced Jc. The addition of water vapor during the UV soaking process decreased the content of carbon residue in the films, and further increased the Jc of the resulting YBCO films.
The crystal structure and thermal expansion of the perovskite samarium cobalt oxide (SmCoO3) have been determined over the temperature range 295–1245 K by Rietveld analysis of X-ray powder diffraction data. Polycrystalline samples were prepared by a sol–gel synthesis route followed by high-temperature calcination in air. SmCoO3 is orthorhombic (Pnma) at all temperatures and is isostructural with GdFeO3. The structure was refined as a distortion mode of a parent $ Pm{\bar 3}m $ structure. The thermal expansion was found to be non-linear and anisotropic, with maximum average linear thermal expansion coefficients of 34.0(3) × 10−6, 24.05(17) × 10−6, and 24.10(18) × 10−6 K−1 along the a-, b-, and c-axes, respectively, between 814 and 875 K.
This article analyses centralizing trends that may be able to reduce the negative influence of local protectionism on environmental law enforcement in China. The article finds that as centralizing trends unfolded, enforcement over time has become stricter and more frequent, however with only minor effects in reducing pollution. Moreover it finds a situation of uneven enforcement with richer and more urbanized areas having much stronger and more frequent enforcement than inland areas. Centralizing trends may thus have spurred stronger enforcement, but concurrently allowed for an uneven enforcement. At the same time, the article finds a continued local influence, keeping enforcement too weak to have much effect in reducing pollution and allowing for local interests to shape enforcement into unequal outcomes.
Infants born with low birth weights (<2500 g, LBW), accounting for about 15 % of newborns, have a high risk for postnatal growth failure and developing the metabolic syndromes such as type 2 diabetes, CVD and obesity later in life. Improper nutrition provision during critical stages, such as undernutrition during the fetal period or overnutrition during the neonatal period, has been an important mediator of these metabolic diseases. Considering the specific physiological status of LBW infants, nutritional intervention and optimisation during early life merit further attention. In this review, the physiological and metabolic defects of LBW infants were summarised from a nutritional perspective. Available strategies for nutritional interventions and optimisation of LBW infants, including patterns of nutrition supply, macronutrient proportion, supplementation of amino acids and their derivatives, fatty acids, nucleotides, vitamins, minerals as well as hormone and microbiota manipulators, were reviewed with an aim to provide new insights into the advancements of formulas and human-milk fortifiers.
Surface texture was prepared on the ASTM1045 steel substrate before spraying. Three texturing patterns (groove pattern, square pattern, and hexagon pattern) were acquired by laser processing to investigate the influence of texturing patterns on the adhesion strength of sprayed coatings. The Ni60 coatings were prepared on the textured surface by atmosphere plasma spraying technology. Scanning electron microscopy and laser 3D microscope were used to characterize the morphology of texturing. The adhesion strength between coating and substrate was examined by the tensile test. Image pro plus software was used to calculate the contact area ratio of the textured substrate. The results show that the texturing processed substrates by laser radiation present plain area between two dimples and the protrusion around texturing, and the contact area between coating and substrate is increased. The adhesion strength of coatings with a groove pattern, a square pattern, and a hexagon pattern is 58, 33, and 47 MPa, respectively. The adhesion strength of sprayed coatings varies with the change of the texturing pattern, and it does not only depend on the contact area ratio but also on the texturing density and the texturing microstructure.
For the prevention and control of newly emergent or sudden infectious diseases, we built an on-site, modularized prevention and control system and tested the equipment by using the clustering analysis method. On the basis of this system, we propose a modular equipment allocation method and 4 applications of this method for different types of infectious disease prevention and control. This will help to improve the efficiency and productivity of anti-epidemic emergency forces and will provide strong technical support for implementing more universal and serialized equipment in China. (Disaster Med Public Health Preparedness. 2017;11:375–382)
Psychiatric disorders such as schizophrenia and major depressive disorder
(MDD) are likely to be caused by multiple susceptibility genes, each with
small effects in increasing the risk of illness. Identifying DNA variants
associated with schizophrenia and MDD is a crucial step in understanding
the pathophysiology of these disorders.
Aims
To investigate whether the SP4 gene plays a significant
role in schizophrenia or MDD in the Han Chinese population.
Method
We focused on nine single nucleotide polymorphisms (SNPs) harbouring the
SP4 gene and carried out case–control studies in 1235
patients with schizophrenia, 1045 patients with MDD and 1235 healthy
controls recruited from the Han Chinese population.
Results
We found that rs40245 was significantly associated with schizophrenia in
both allele and genotype distributions (Pallele = 0.0005, Pallele = 0.004 after Bonferroni correction; Pgenotype = 0.0023, Pgenotype = 0.0184 after Bonferroni correction). The rs6461563
SNP was significantly associated with schizophrenia in the allele
distributions (Pallele = 0.0033, Pallele = 0.0264 after Bonferroni correction).
Conclusions
Our results suggest that common risk factors in the SP4
gene are associated with schizophrenia, although not with MDD, in the Han
Chinese population.
We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge (CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation (FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.