We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: The coronavirus disease 2019 (COVID-19) pandemic has led an implementation of institutional infection control protocols. This study will determine the effects of these protocols on outcomes of acute ischemic stroke (AIS) patients treated with endovascular therapy (EVT). Methods: Uninterrupted time series analysis of the impact of COVID-19 safety protocols on AIS patients undergoing EVT. We analyze data from prospectively collected quality improvement databases at 9 centers from March 11, 2019 to March 10, 2021. The primary outcome is 90-day modified Rankin Score (mRS). The secondary outcomes are angiographic time metrics. Results: Preliminary analysis of one stroke center included 214 EVT patients (n=144 pre-pandemic). Baseline characteristics were comparable between the two periods. Time metrics “last seen normal to puncture” (305.7 vs 407.2 min; p=0.05) and “hospital arrival to puncture” (80.4 vs 121.2 min; p=0.04) were significantly longer during pandemic compared to pre-pandemic. We found no significant difference in 90-day mRS (2.0 vs 2.2; p=0.506) or successful EVT rate (89.6% vs 90%; p=0.93). Conclusions: Our results indicate an increase in key time metrics of EVT in AIS during the pandemic, likely related to infection control measures. Despite the delays, we found no difference in clinical outcomes between the two periods.
This study investigated the audiometric and sound localisation results in patients with conductive hearing loss after bilateral Bonebridge implantation.
Method
Eight patients with congenital microtia and atresia supplied with bilateral Bonebridge devices were enrolled in this study. Hearing tests and sound localisation were tested under unaided, unilateral and bilateral aided conditions.
Results
Mean functional gain was higher with a bilateral fitting than with a unilateral fitting, especially at 1.0–4.0 kHz (p < 0.05, both). The improvement in speech reception threshold in noise with a bilateral fitting was a 2.3 dB higher signal-to-noise ratio compared with unilateral fitting (p < 0.05). Bilateral fitting had better sound localisation than unilateral fitting (p <0.001). Four participants who attended follow up showed improved sound localisation ability after one year.
Conclusion
Patients demonstrated better hearing threshold, speech reception thresholds in noise and directional hearing with bilateral Bonebridge devices than with a unilateral Bonebridge device. Sound localisation ability with bilateral Bonebridge devices can be improved through long-term training.
Finding less complicated coils that have adequately low field errors is a crucial step in stellarator development. One coil metric that is of high importance is the maximum curvature of the coil centreline, or coil single filament. Conductors cannot be bent below some threshold minimum radius of curvature. High coil curvatures can cause strains to exceed acceptable levels, especially in superconducting coils. We investigate three ways to optimize coil curvature and find that applying penalty functions to the coil curvature solves for coils that have a constrained maximum curvature and low field error. Penalty functions are implemented in FOCUS and coil solutions optimized for an HSX-like ‘plasma boundary’ are presented.
An acute gastroenteritis (AGE) outbreak caused by a norovirus occurred at a hospital in Shanghai, China, was studied for molecular epidemiology, host susceptibility and serological roles. Rectal and environmental swabs, paired serum samples and saliva specimens were collected. Pathogens were detected by real-time polymerase chain reaction and DNA sequencing. Histo-blood group antigens (HBGA) phenotypes of saliva samples and their binding to norovirus protruding proteins were determined by enzyme-linked immunosorbent assay. The HBGA-binding interfaces and the surrounding region were analysed by the MegAlign program of DNAstar 7.1. Twenty-seven individuals in two care units were attacked with AGE at attack rates of 9.02 and 11.68%. Eighteen (78.2%) symptomatic and five (38.4%) asymptomatic individuals were GII.6/b norovirus positive. Saliva-based HBGA phenotyping showed that all symptomatic and asymptomatic cases belonged to A, B, AB or O secretors. Only four (16.7%) out of the 24 tested serum samples showed low blockade activity against HBGA-norovirus binding at the acute phase, whereas 11 (45.8%) samples at the convalescence stage showed seroconversion of such blockade. Specific blockade antibody in the population played an essential role in this norovirus epidemic. A wide HBGA-binding spectrum of GII.6 supports a need for continuous health attention and surveillance in different settings.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
A disruption database characterizing the current quench of disruptions with ITER-like tungsten divertor has been developed on EAST. It provides a large number of plasma parameters describing the predisruptive plasma, current quench time, eddy current, and mitigation by massive impurity injection, which shows that the current quench time strongly depends on magnetic energy and post-disruption electron temperature. Further, the energy balance and magnetic energy dissipation during the current quench phase has been well analysed. Magnetic energy is also demonstrated to be dissipated mainly by ohmic reheating and inductive coupling, and both of the two channels have great effects on current quench time. Also, massive gas injection is an efficient method to speed up the current quench and increase the fraction of impurity radiation.
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ($B_0 = 12.2$ T), compact ($R_0 = 1.85$ m, $a = 0.57$ m), superconducting, D-T tokamak with the goal of producing fusion gain $Q>2$ from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of $Q>2$ is achievable with conservative physics assumptions ($H_{98,y2} = 0.7$) and, with the nominal assumption of $H_{98,y2} = 1$, SPARC is projected to attain $Q \approx 11$ and $P_{\textrm {fusion}} \approx 140$ MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ($\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$), high temperature ($\langle T_e \rangle \approx 7$ keV) and high power density ($P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
SPARC is being designed to operate with a normalized beta of $\beta _N=1.0$, a normalized density of $n_G=0.37$ and a safety factor of $q_{95}\approx 3.4$, providing a comfortable margin to their respective disruption limits. Further, a low beta poloidal $\beta _p=0.19$ at the safety factor $q=2$ surface reduces the drive for neoclassical tearing modes, which together with a frozen-in classically stable current profile might allow access to a robustly tearing-free operating space. Although the inherent stability is expected to reduce the frequency of disruptions, the disruption loading is comparable to and in some cases higher than that of ITER. The machine is being designed to withstand the predicted unmitigated axisymmetric halo current forces up to 50 MN and similarly large loads from eddy currents forced to flow poloidally in the vacuum vessel. Runaway electron (RE) simulations using GO+CODE show high flattop-to-RE current conversions in the absence of seed losses, although NIMROD modelling predicts losses of ${\sim }80$ %; self-consistent modelling is ongoing. A passive RE mitigation coil designed to drive stochastic RE losses is being considered and COMSOL modelling predicts peak normalized fields at the plasma of order $10^{-2}$ that rises linearly with a change in the plasma current. Massive material injection is planned to reduce the disruption loading. A data-driven approach to predict an oncoming disruption and trigger mitigation is discussed.
The pandemic of coronavirus disease 2019 (COVID-19) has posed serious challenges. It is vitally important to further clarify the epidemiological characteristics of the COVID-19 outbreak for future study and prevention and control measures. Epidemiological characteristics and spatial−temporal analysis were performed based on COVID-19 cases from 21 January 2020 to 1 March 2020 in Shandong Province, and close contacts were traced to construct transmission chains. A total of 758 laboratory-confirmed cases were reported in Shandong. The sex ratio was 1.27: 1 (M: F) and the median age was 42 (interquartile range: 32–55). The high-risk clusters were identified in the central, eastern and southern regions of Shandong from 25 January 2020 to 10 February 2020. We rebuilt 54 transmission chains involving 209 cases, of which 52.2% were family clusters, and three widespread infection chains were elaborated, occurring in Jining, Zaozhuang and Liaocheng, respectively. The geographical and temporal disparity may alert public health agencies to implement specific measures in regions with different risk, and should attach importance on how to avoid household and community transmission.
Studies revealed that prenatal stress (PS) may increase the vulnerability to depression in their offspring, and ERK-CREB signal system might play a role in its mechanism.
Objectives and aims
The present study investigated the effect of MK-801 on depressive-like behavior and its impacts on ERK2, CREB, Bcl-2 mRNA expression in PS female rat offspring.
Methods
The pregnant rats were randomly divided into three groups, the control group (Con) was left undisturbed, the PS-saline group (PS-saline) and the PS-MK-801 group (PS-MK-801) were subjected to restraint stress on days 14–20 of pregnancy three times daily for 45 min, and received an i.p. administration of saline or MK-801(sigma, 0.2 mg/kg) 30 min before the first stress respectively. Forced swimming test was undertaken to assess depressive-like behavior in one month female offspring. ERK2, CREB, Bcl-2 mRNA in the hippocampus, frontal cortex, and striatum were detected by RT-PCR.
Results
PS-saline spent significantly more immobile time compared to Con and PS-MK-801 (P < 0.05). ERK2 and CREB mRNA expression in hippocampus and frontal cortex was significantly decreased in PS-saline compared to Con and PS-MK-801 (P < 0.05), while in striatum CREB mRNA expression in PS-saline was lower than Con (P < 0.05). Bcl-2 mRNA expression in hippocampus and striatum was significantly decreased in PS-saline (P < 0.05), and in frontal cortex, its expression was significantly lower in PS-saline and PS-MK-801 (P < 0.05).
Conclusions
PS may suppress ERK-CREB signal pathway in female offspring rats, which could be partly prevented by MK- 801. (Supported by National Natural Science Foundation of China, No: 30970952).
Epidemiological studies have convinced that prenatal stress (PS) might cause offspring depression.
Objectives and aims:
Our pervious research work certified that PS can increases the glutamate level of hippocampus of rat offspring, which inspired us to explore the pathogenesis of depression by focusing on glutamatergic system.
Methods:
Pregnant rats were randomly assigned to control group (CON), mid prenatal stress group (MPS) and late prenatal stress group (LPS). The pregnant rats of MPS and LPS were exposed to restraint stress on days 7–13, 14–20 of pregnancy three times for 45 min respectively. Tail suspension test (TST) was performed to examine the depression like behavior and Western-blot were used to test phosphorylated GluR1(pGluR1) of AMPAR expression in the hippocampus, striatum and frontal cortex of one month rat offspring.
Results:
For both male and female offspring, the time of immobility of TST in LPS (156±11, 155±12) and MPS (173±15, 155±12) was significantly longer (P< 0.05) than CON(118±8,113±12), the latency in MPS (18±3, 24±3) was significantly shorter (P< 0.05) than CON (30±5, 58±11). The pGluR1 expression in hippocampus and frontal cortex in LPS (1.77±0.45, 1.00±0.09) and MPS (1.65±0.51, 1.05±0.18) were significantly lower (P< 0.05) than CON (3.72±0.86, 2.05±0.34) in male rat offspring.
Conclusion:
It is suggested that the PS may induce depression like behavior in rat offspring, and glutamate receptors subunit pGluR1 might be involved in the etiology of depression.
(The research is supported by National Natural Science Foundation of China, No: 30970952, 18110059).
A new generation of high power laser facilities will provide laser pulses with extremely high powers of 10 petawatt (PW) and even 100 PW, capable of reaching intensities of $10^{23}~\text{W}/\text{cm}^{2}$ in the laser focus. These ultra-high intensities are nevertheless lower than the Schwinger intensity $I_{S}=2.3\times 10^{29}~\text{W}/\text{cm}^{2}$ at which the theory of quantum electrodynamics (QED) predicts that a large part of the energy of the laser photons will be transformed to hard Gamma-ray photons and even to matter, via electron–positron pair production. To enable the investigation of this physics at the intensities achievable with the next generation of high power laser facilities, an approach involving the interaction of two colliding PW laser pulses is being adopted. Theoretical simulations predict strong QED effects with colliding laser pulses of ${\geqslant}10~\text{PW}$ focused to intensities ${\geqslant}10^{22}~\text{W}/\text{cm}^{2}$.
Toca 511 (vocimagene amiretrorepvec) is an investigational, conditionally lytic, retroviral replicating vector (RRV). RRVs selectively infect cancer cells due to innate and adaptive immune response defects in cancers that allow virus replication, and the requirement for cell division for virus integration into the genome. Toca 511 spreads through tumors, stably delivering an optimized yeast cytosine deaminase gene that converts the prodrug Toca FC (investigational, extended-release 5-FC) into 5-FU within the tumor microenvironment. 5-FU kills infected dividing cancer cells and surrounding tumor, myeloid derived suppressor cells, and tumor associated macrophages, resulting in long-term tumor immunity in preclinical models. Data from a Phase 1 resection trial showed six durable CRs and extended mOS compared to historical controls. The FDA granted Breakthrough Therapy Designation for Toca 511 & Toca FC in the treatment of patients with rHGG. Toca 5 is an international, randomized, open-label Phase 3 trial (NCT02414165) of Toca 511 & Toca FC versus SOC in patients undergoing resection for first or second recurrence of rHGG. Patients will be stratified by IDH1 status, KPS, and geographic region. Primary endpoint is OS, and secondary endpoints are durable response rate, durable clinical benefit rate, duration of durable response, and 12-month survival rate. Key inclusion criteria are histologically proven GBM or AA, tumor size ≥1cm and ≤5cm, and KPS ≥70. Immune monitoring and molecular profiling will be performed. Approximately 380 patients will be randomized. An IDMC is commissioned to review the safety and efficacy data which includes 2 interim analyses. Enrollment is ongoing.
Extensive insecticide use has led to the resistance of mosquitoes to these insecticides, posing a major barrier to mosquito control. Previous Solexa high-throughput sequencing of Culex pipiens pallens in the laboratory has revealed that the abundance of a novel microRNA (miRNA), miR-13664, was higher in a deltamethrin-sensitive (DS) strain than a deltamethrin-resistant (DR) strain. Real-time quantitative PCR revealed that the miR-13664 transcript level was lower in the DR strain than in the DS strain. MiR-13664 oversupply in the DR strain increased the susceptibility of these mosquitoes to deltamethrin, whereas inhibition of miR-13664 made the DS strain more resistant to deltamethrin. Results of bioinformatic analysis, quantitative reverse-transcriptase polymerase chain reaction, luciferase assay and miR mimic/inhibitor microinjection revealed CpCYP314A1 to be a target of miR-13664. In addition, downregulation of CpCYP314A1 expression in the DR strain reduced the resistance of mosquitoes to deltamethrin. Taken together, our results indicate that miR-13664 could regulate deltamethrin resistance by interacting with CpCYP314A1, providing new insights into mosquito resistance mechanisms.
A liquid chromatography mass spectrometry method for determination of clothianidin in brown rice, straw, rice hull, paddy water and paddy sediment was developed and residue levels were determined in the different components. The limit of quantification was set at 0·01 mg/kg for the matrices studied. Clothianidin degradation in straw, paddy water and soil was studied, and clothianidin residues in brown rice, straw, hull and paddy soil were determined. Concurrent recoveries were between 85·6 and 92·5%, with relative standard deviations ranging from 1·3 to 6·8% at three fortification levels between 0·01 and 5·0 mg/kg. The half-lives in straw, paddy water and paddy sediment were found to be 1·9–4·9, 4·1–5·0 and 4·9–6·3 days, respectively. The maximum residues in brown rice, straw, hull and paddy soil samples were 0·38, 1·88, 1·38 and 0·14 mg/kg, respectively.
The role of the protozoan parasite Toxoplasma gondii in the pathogenesis of liver disease has recently gained much interest. The aim of this study was to determine the prevalence and risk factors associated with T. gondii infection in patients with liver disease from three cities in Shandong and Henan provinces, China. A case–control study was conducted from December 2014 to November 2015 and included 1142 patients with liver disease and 1142 healthy controls. Serum samples were collected from all individuals and were examined with enzyme-linked immunosorbent assay for the presence of anti-T. gondii IgG and IgM antibodies. Information on the demographics, clinical, and lifestyle characteristics of the participants was collected from the medical records and by the use of a questionnaire. The prevalence of anti-T. gondii IgG was 19·7% in patients with liver disease compared with 12·17% in the controls. Only 13 patients had anti-T. gondii IgM antibodies compared with 12 control individuals (1·14% vs. 1·05%, respectively). The highest seroprevalence was detected in patients with liver cancer (22·13%), followed by hepatitis patients (20·86%), liver cirrhosis patients (20·42%), and steatosis patients (20%). Multivariate logistic regression analysis indicated that consumption of raw meat (odds ratio (OR) = 1·32; 95% confidence interval (CI) 1·01–1·71; P = 0·03) and source of drinking water from wells (OR = 1·56; 95% CI 1·08–2·27; P = 0·01) were independent risk factors for T. gondii infection in liver disease patients. These findings indicate that T. gondii infection is more likely to be present in patients with liver disease. Therefore, efforts should be directed toward health education of populations at high risk of T. gondii infection and measures should be taken to protect vulnerable patients with liver disease.
A new approach is proposed to analyze Bremsstrahlung X-rays that are emitted from laser-produced plasmas (LPP) and are measured by a stack type spectrometer. This new method is based on a spectral tomographic reconstruction concept with the variational principle for optimization, without referring to the electron energy distribution of a plasma. This approach is applied to the analysis of some experimental data obtained at a few major laser facilities to demonstrate the applicability of the method. Slope temperatures of X-rays from LPP are determined with a two-temperature model, showing different spectral characteristics of X-rays depending on laser properties used in the experiments.
Laser-driven relativistic electrons can be focused onto a high-Z convertor for generating high-brightness γ-rays, which in turn can be used to induce photonuclear reactions. In this work, photo-transmutation of long-lived radionuclide 135Cs induced by laser–plasma–interaction-driven electron source is demonstrated using Geant4 simulation (Agostinelli et al., 2003 Nucl. Instrum. Meth. A506, 250). High-energy electron generation, bremsstrahlung, as well as photonuclear reaction are observed at four different laser intensities: 1020, 5 × 1020, 1021, and 5 × 1021 W/cm2. The transmutation efficiency depends on the laser intensity and target size. An optimum laser intensity, namely 1021 W/cm2, was found, with the corresponding photonuclear reaction yield reaching 108 J−1 of the laser energy. Laser-generated electrons can therefore be a promising tool for transmutation reactions. Potential application in nuclear waste management is suggested.
The present study investigated the effects of dietary conjugated linoleic acid (CLA) on the cellular immune response of piglets after cyclosporin A (CsA) treatment. The experimental study had a 2×2 factorial design, and the main factors consisted of diets (0% or 2% CLA) and immunosuppression treatments (CsA or saline injection). CsA injection significantly increased feed : gain (F : G) of piglets (P<0.05); however, dietary CLA significantly decreased F : G of piglets (P<0.05). Dietary CLA partly ameliorated the deterioration of the feed conversion rate caused by CsA treatment (P<0.01). CsA treatment significantly decreased the percentages of CD4+ and CD8+ T lymphocytes in the thymus (P<0.01). Dietary CLA increased the percentages of CD4+ CD8+ double-positive and CD8+ single-positive T lymphocytes in the thymus (P<0.05), and had the trend to inhibit the decrease of CD4+ T lymphocytes in the thymus after CsA injection (P=0.07). CsA treatment significantly depleted the peripheral blood CD3+, CD4+ and CD8+ T lymphocytes (P<0.01). Dietary CLA significantly increased the number of peripheral blood CD8+ T lymphocytes and interleukin-2 (IL-2) production (P<0.05), and inhibited the decreases of peripheral blood CD3+, CD4+ and CD8+ T lymphocytes counts (P<0.01) as well as IL-2 production (P<0.05) after CsA treatment. Dietary CLA partly rescued the decrease of lymphocyte proliferation after CsA injection (P<0.05). In summary, dietary CLA effectively ameliorated CsA-induced cellular immunosuppression in piglets.
Much progress has been made in recent years towards understanding how early-type galaxies (ETGs) form and evolve. SAURON (Bacon et al. 2001) integral-field spectroscopy from the ATLAS3D survey (Cappellari et al. 2011) has suggested that less massive ETGs are linked directly to spirals, whereas the most massive objects appear to form from a series of merging and accretion events (Cappellari et al. 2013). However, the ATLAS3D data typically only extends to about one half-light radius (or effective radius, Re), making it unclear if this picture is truly complete.