We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Aorto-right-atrial fistula is an uncommon condition with an unclear pathogenesis. We present the case of a 3-year-old girl with a giant omphalocele repaired days after birth and incidentally discovered with a celiacomesenteric trunk-to-right atrium fistula. Three-dimensional reconstruction CT unveiled its anatomical pattern, and the fistula was successfully closed using a Amplatzer vascular plug II percutaneously.
The mitochondrial genome provides important information for phylogenetic analysis and an understanding of evolutionary origin. In this study, the mitochondrial genomes of Ilisha elongata and Setipinna tenuifilis were sequenced, which are typical circular vertebrate mitochondrial genomes composed of 16,770 and 16,805 bp, respectively. The mitogenomes of I. elongata and S. tenuifilis include 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA), two ribosomal RNA (rRNA) genes and one control region (CR). Both two species' genome compositions were highly A + T biased and exhibited positive AT-skews and negative GC-skews. The genetic distance and Ka/Ks ratio analyses indicated that 13 PCGs were affected by purifying selection and the selection pressures were different from certain deep-sea fishes, which were most likely due to the difference in their living environment. Results of phylogenetic analysis support close relationships among Chirocentridae, Denticipitidae, Clupeidae, Engraulidae and Pristigasteridae based on the nucleotide and amino acid sequences of 13 PCGs. Within Clupeoidei, I. elongata and S. tenuifilis were most closely related to the family Pristigasteridae and Engraulidae, respectively. These results will help to better understand the evolutionary position of Clupeiformes and provide a reference for further phylogenetic research on Clupeiformes species.
In the present study, turbulent particle-laden boundary layer combustion over a flat plate is investigated using direct numerical simulation (DNS). A two-way coupled Eulerian–Lagrangian point particle method is used for the solid phase. The effects of particle Stokes numbers, mass loadings and chemical reactions on the interactions between particles and boundary layer turbulence in the near-wall region are explored. It was found that particle heat transfer is dominant over wall heat transfer in the reacting case with heavy particles and large mass loadings, resulting in a lower fluid temperature. Particle accumulation due to the turbophoresis effect in the near-wall region is observed, which is more prominent in the cases with a large Stokes number. The turbophoresis effect is examined via the magnitude of streamwise vorticity $\varOmega _x$. It is shown that $\varOmega _x$ is attenuated by heavy particles, and the attenuation increases with increasing mass loadings. Therefore, particle wall–accumulation is less prominent in the cases with large mass loadings. Compared with the non-reacting cases, the distribution of particles is more inhomogeneous for the reacting cases, where the particles move faster due to intense reactions with increasing wall-normal distance. Finally, the flow topologies and the Reynolds stress anisotropy are examined to understand turbulence modulation by combustion and particles. It was suggested that light particles augment the vortex-dominant topologies, whereas heavy particles have an opposite effect. The anisotropy mapping of the Reynolds stress shows that the flows become more one-dimensional in the near-wall region for the cases with combustion and/or large mass loadings.
Problematic internet use, especially in people with substance use disorder, may negatively affect their quality of life (QoL). However, it is unclear whether sleep quality is a key mediator in the association between problematic internet use and QoL among people with substance use disorder.
Aims
This study aimed to investigate the relationship between problematic internet use and QoL and how sleep quality may mediate the association between these two variables.
Method
Overall, 319 people (85% male) with substance use disorder (mean age 42.2 years, s.d. 8.9) participated in a cross-sectional study in Taiwan. The Smartphone Application-Based Addiction Scale, Bergan Social Media Addiction Scale, Internet Gaming Disorder-Short Form, Pittsburgh Sleep Quality Index and World Health Organization Quality of Life Questionnaire Brief Version were used.
Results
The prevalence of sleep problems was 56%. There were significant and direct associations between sleep quality and two types of problematic internet use, and between sleep quality and different dimensions of QoL. All types of problematic internet use were significantly and negatively correlated with QoL. Mediated effects of sleep quality in relationships between the different types of problematic internet use and all dimensions of QoL were significant, except for problematic use of social media.
Conclusions
Different types of problematic internet use in people with substance use disorder may be directly associated with reduced QoL. Sleep quality as a significant mediator in this association may be an underlying mechanism to explain pathways between problematic internet use and QoL in this population.
This study aimed to evaluate the efficacy and safety of high-frequency oscillation ventilation combined with intermittent mandatory ventilation in infants with acute respiratory distress syndrome after congenital heart surgery.
Methods:
We retrospectively analysed the clinical data of 32 infants who were ventilated due to acute respiratory distress syndrome after congenital heart surgery between January, 2020 and January, 2022. We adopted high-frequency oscillation ventilation combined with intermittent mandatory ventilation as the rescue ventilation mode for infants who were failing conventional mechanical ventilation.
Results:
After rescue high-frequency oscillation ventilation combined with intermittent mandatory ventilation, the dynamic compliance (Cdyn), PaO2 and PaO2/FiO2 ratio of the infants improved compared with conventional mechanical ventilation (p < 0.05). Moreover, high-frequency oscillation ventilation combined with intermittent mandatory ventilation resulted in a significant decrease in arterial-alveolar oxygen difference (AaDO2), FiO2, and oxygenation index (p < 0.05). No significant effect on haemodynamic parameters was observed. Moreover, no serious complications occurred in the two groups.
Conclusion:
Rescue high-frequency oscillation ventilation combined with intermittent mandatory ventilation significantly improved oxygenation in infants who failed conventional mechanical ventilation for acute respiratory distress syndrome after congenital heart surgery. Thus, this strategy is considered safe and feasible. However, further studies must be conducted to confirm the efficacy and safety of high-frequency oscillation ventilation combined with intermittent mandatory ventilation as a rescue perioperative respiratory support strategy for CHD.
The Lochkovian (Lower Devonian) conodont biostratigraphy in China is poorly known, and conodont-based subdivision schemes for the Lochkovian in peri-Gondwana (the Spanish Central Pyrenees, the Prague Synform, Sardinia, and the Carnic Alps) have not been tested in China. Therefore, we studied conodonts from the lower part (Bed 9 to Bed 13) of the Shanjiang Formation at the Alengchu section of Lijiang, western Yunnan to test the application of established subdivision schemes. The conodont fauna is assignable to 12 taxa belonging to eight genera (Ancyrodelloides, Flajsella, Lanea, Wurmiella, Zieglerodina, Caudicriodus, Pelekysgnathus, and Pseudooneotodus), and enables recognition of two chronostratigraphical intervals from the lower part of the Shanjiang Formation. The interval ranging from the uppermost part of Bed 9 to the upper part of Bed 10 belongs to the lower Lochkovian; whereas an interval covering the uppermost part of Bed 11 to the upper part of Bed 13 is correlated with the upper half of the middle Lochkovian. The Silurian-Devonian boundary is probably located within Bed 9, in the basal part of the Shanjiang Formation. However, the scarcity of specimens precludes definitive identification of bases of the lower, middle, and upper Lochkovian as well as other conodont zones recognized in peri-Gondwana.
The Democratic Republic of the Congo (DRC) has one of the highest levels of child undernutrition globally; however, little information exists on the underlying socio-economic inequalities resulting in undernutrition. This study aims to examine the differences in the nutritional statuses of children across different wealth quintiles and explores the association between malnutrition in children and related factors.
Design:
We utilised the 2018 Multiple Indicator Cluster Survey data. We estimated the prevalence of malnutrition across all twenty-six provinces. The study used the WHO 2006 child growth standards to measure stunting, underweight and wasting. We employed a mixed-effect linear model to analyse the association between nutritional status and healthcare accessibility, domestic sanitation, and socio-demographic factors.
Setting:
Twenty-six provinces in the DRC.
Participants:
21 477 children under 5 years of age and 21 828 women of childbearing age in the DRC.
Results:
The national prevalence of underweight, stunting and wasting was found to be 23·33 %, 42·05 % and 5·66 %, respectively. Household wealth and mother’s education level were significantly positively associated with the nutritional statuses of children. Among households in the lowest wealth quintile, residence in urban areas was a protective factor against undernutrition.
Conclusion:
The findings of this study indicate considerable socio-economic inequalities in the nutritional statuses of children under 5 years of age in the DRC, highlighting the need for nutrition promotion as part of maternal and child healthcare. Interventions and policies should include improving nutrition education for less-educated mothers, in particular, in the central provinces of the DRC.
Existing studies have examined the demand elasticities for organic products only in select categories, and their results for consumers' sensitivity to price changes are inconsistent. Evidence regarding the effects of price promotions on the demand for organic foods vs non-organic foods is scarce. This study aims to (1) examine the own-price elasticities of organic foods vs non-organic counterparts both with and without a promotion in a variety of product categories, and (2) investigate how the distinctive promotion effects between organic and non-organic counterparts depend on food category features. Using purchase data for 36 food categories from the 2015 Nielsen Consumer Panel, we find differential own-price elasticities for organic and non-organic foods, regardless of whether the product is purchased with a promotion. When the products are purchased with a promotion, we find stronger price promotion effects of organic virtues than non-organic virtues and weaker price promotion effects of organic vices than conventional vices. Price promotions of organic foods are more likely to induce health-conscious consumers to switch from conventional purchases to organic purchases in virtues.
This study aimed to evaluate the performance of Cobas human papillomavirus (HPV) test in cervical cancer screening. A total of 3442 women aged ⩾20 years used Cobas HPV and hybrid capture 2 (HC2) tests were included in this study. Women with any positive result were examined by liquid-based cytology (LBC) test. Then subjects with abnormal LBC or positive Cobas HPV16/18 were further checked by colposcopy to observe the visible lesions to perform the pathological examination. Of these 3442 women, 328 cases were Cobas HPV positive, and the positive rate was 9.53% (95% confidence interval (CI) 8.50–10.53). The positive rate of HPV16, HPV18, and other 12 types of high-risk HPV were 1.54% (95% CI 1.12–1.95), 0.55% (95% CI 0.30–0.80), and 7.44% (95% CI 6.56–8.32), respectively. The coincidence rate of Cobas HPV test and HC2 test was 90% (95% CI 89.00–91.00; Kappa = 0.526) in the primary screening. Age had a non-linear relationship with Cobas HPV positive rate (χ2 = 4.240, P = 0.040) and HPV16/18 typing positive rate (χ2 = 6.610, P = 0.010). Compared with the LBC test, the Cobas HPV test had higher sensitivity when detecting patients with high cervical intraepithelial neoplasia (CIN2+ and CIN3+).
DNA methylation is one of the most important epigenetic modifications in breast cancer (BC) development, and long-term dietary habits can alter DNA methylation. Cadherin-4 (CDH4, a member of the cadherin family) encodes Ca2+-dependent cell–cell adhesion glycoproteins. We conducted a case–control study (380 newly diagnosed BC and 439 cancer-free controls) to explore the relationship of CDH4 methylation in peripheral blood leukocyte DNA (PBL DNA), as well as its combined and interactive effects with dietary factors on BC risk. A case-only study (335 newly diagnosed BC) was conducted to analyse the association between CDH4 methylation in breast tissue DNA and dietary factors. CDH4 methylation was detected using quantitative methylation-specific PCR. Unconditional logistic regressions were used to analyse the association of CDH4 methylation in PBL DNA and BC risk. Cross-over analysis and unconditional logistic regression were used to calculate the combined and interactive effects between CDH4 methylation in PBL DNA and dietary factors in BC. CDH4 hypermethylation was significantly associated with increased BC risk in PBL DNA (ORadjusted (ORadj) = 2·70, (95 % CI 1·90, 3·83), P < 0·001). CDH4 hypermethylation also showed significant combined effects with the consumption of vegetables (ORadj = 4·33, (95 % CI 2·63, 7·10)), allium vegetables (ORadj = 7·00, (95 % CI 4·17, 11·77)), fish (ORadj = 7·92, (95 % CI 3·79, 16·53)), milk (ORadj = 6·30, (95 % CI 3·41, 11·66)), overnight food (ORadj = 4·63, (95 % CI 2·69, 7·99)), pork (ORadj = 5·59, (95 % CI 2·94, 10·62)) and physical activity (ORadj = 4·72, (95 % CI 2·87, 7·76)). Moreover, consuming milk was significantly related with decreased risk of CDH4 methylation (OR = 0·61, (95 % CI 0·38, 0·99)) in breast tissue. Our findings may provide direct guidance on the dietary intake for specific methylated carriers to decrease their risk for developing BC.
The present paper focuses on the structures and dynamics of flame edges in planar turbulent non-premixed flames bounded with a wall using direct numerical simulation (DNS). The global quenching behaviour was first examined and the flame edges were identified based on the intersections of mixture fraction and OH mass fraction iso-surfaces. For the upper branch of the planar jet flame, it is observed that the structures of flame edges change from tribrachial to monobrachial with increasing scalar dissipation rate. The flame edge speed is negatively correlated with the scalar dissipation rate in regions away from the wall, highlighting the role of turbulent mixing on the flame edge dynamics. During flame–wall interactions, the propagation speed of flame edges is mainly affected by the projection of edge flame normal in the wall-normal direction, i.e. $\boldsymbol {N}_{Z}\boldsymbol {\cdot }\boldsymbol {N}_{wall}$. In particular, the propagation speed increases with increasing $\boldsymbol {N}_{Z}\boldsymbol {\cdot }\boldsymbol {N}_{wall}$ in the near-wall region. The interactions of flame edges and turbulence bounded with a wall are characterized by the alignment between edge flame normal and principal strain rates. The normal of quenching edges has a tendency to align with the most extensive strain rate $\boldsymbol {e}_{1}$ in regions where the heat-release-induced dilatation is dominant over turbulent strain. In contrast, when the heat loss by cold wall effect is large enough to counteract the heat release induced by chemical reactions, turbulent strain is prevalent and the edge flame normal of the quenching edges preferentially aligns with the most compressive strain rate $\boldsymbol {e}_{3}$.
Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver disease that accompanies obesity and the metabolic syndrome. Excess fructose consumption can initiate or exacerbate NAFLD in part due to a consequence of impaired hepatic fructose metabolism. Preclinical data emphasized that fructose-induced altered gut microbiome, increased gut permeability, and endotoxemia play an important role in NAFLD, but human studies are sparse. The present study aimed to determine if two weeks of excess fructose consumption significantly alters gut microbiota or permeability in humans.
Methods:
We performed a pilot double-blind, cross-over, metabolic unit study in 10 subjects with obesity (body mass index [BMI] 30–40 mg/kg/m2). Each arm provided 75 grams of either fructose or glucose added to subjects’ individual diets for 14 days, substituted isocalorically for complex carbohydrates, with a 19-day wash-out period between arms. Total fructose intake provided in the fructose arm of the study totaled a mean of 20.1% of calories. Outcome measures included fecal microbiota distribution, fecal metabolites, intestinal permeability, markers of endotoxemia, and plasma metabolites.
Results:
Routine blood, uric acid, liver function, and lipid measurements were unaffected by the fructose intervention. The fecal microbiome (including Akkermansia muciniphilia), fecal metabolites, gut permeability, indices of endotoxemia, gut damage or inflammation, and plasma metabolites were essentially unchanged by either intervention.
Conclusions:
In contrast to rodent preclinical findings, excess fructose did not cause changes in the gut microbiome, metabolome, and permeability as well as endotoxemia in humans with obesity fed fructose for 14 days in amounts known to enhance NAFLD.
Nosocomial outbreaks leading to healthcare worker (HCW) infection and death have been increasingly reported during the coronavirus disease 2019 (COVID-19) pandemic.
Objective:
We implemented a strategy to reduce nosocomial acquisition.
Methods:
We summarized our experience in implementing a multipronged infection control strategy in the first 300 days (December 31, 2019, to October 25, 2020) of the COVID-19 pandemic under the governance of Hospital Authority in Hong Kong.
Results:
Of 5,296 COVID-19 patients, 4,808 (90.8%) were diagnosed in the first pandemic wave (142 cases), second wave (896 cases), and third wave (3,770 cases) in Hong Kong. With the exception of 1 patient who died before admission, all COVID-19 patients were admitted to the public healthcare system for a total of 78,834 COVID-19 patient days. The median length of stay was 13 days (range, 1–128). Of 81,955 HCWs, 38 HCWs (0.05%; 2 doctors and 11 nurses and 25 nonprofessional staff) acquired COVID-19. With the exception of 5 of 38 HCWs (13.2%) infected by HCW-to-HCW transmission in the nonclinical settings, no HCW had documented transmission from COVID-19 patients in the hospitals. The incidence of COVID-19 among HCWs was significantly lower than that of our general population (0.46 per 1,000 HCWs vs 0.71 per 1,000 population; P = .008). The incidence of COVID-19 among professional staff was significantly lower than that of nonprofessional staff (0.30 vs 0.66 per 1,000 full-time equivalent; P = .022).
Conclusions:
A hospital-based approach spared our healthcare service from being overloaded. With our multipronged infection control strategy, no nosocomial COVID-19 in was identified among HCWs in the first 300 days of the COVID-19 pandemic in Hong Kong.
Three-dimensional (3-D) measurements of flame stretch are experimentally challenging. In this paper, two-dimensional (2-D) and 3-D measurements of flame stretch and turbulence–flame interactions were examined using direct numerical simulation (DNS) data of turbulent premixed flames, and models to estimate 3-D statistics of flame stretch-related quantities by correcting 2-D measurements were developed. A variety of DNS cases were simulated, including three freely propagating planar flames without a mean shear and a slot-jet flame with a mean shear. The main findings are summarized as follows. First, the mean shear mainly influences the flame orientations. However, it does not change the flame stretch and turbulence–flame interactions qualitatively. The distributions of out-of-plane angle of all cases are nearly isotropic. Second, models were proposed to approximate the 3-D statistics of flame stretch-related quantities using 2-D measurements, the performance of which was verified by comparing modelled and actual 3-D surface averages and probability density functions of tangential strain rate, curvature and displacement velocity. Third, 2-D measurements of flame stretch capture properly the trends of the 3-D results, with flame surface area being produced in low curvature regions and destroyed in highly curved regions. However, the magnitude of flame stretch was under-estimated in 2-D measurements. Finally, 2-D and 3-D turbulence–flame interactions were examined. The flame normal vector is aligned with the most compressive strain rate in both 2-D and 3-D measurements. Meanwhile, the flame normal vector is misaligned (weakly aligned) with the most extensive strain rate in 3-D (2-D) measurements, highlighting the difference in 2-D and 3-D results of turbulence–flame interactions.
We have proposed and experimentally demonstrated a novel scheme for efficient mid-infrared difference-frequency generation based on passively synchronized fiber lasers. The adoption of coincident seeding pulses in the nonlinear conversion process could substantially lower the pumping threshold for mid-infrared parametric emission. Consequently, a picosecond mid-infrared source at 3.1 μm was prepared with watt-level average power, and a maximum power conversion efficiency of 77% was realized from pump to down-converted light. Additionally, the long-term stability of generated power was manifested with a relative fluctuation as low as 0.17% over one hour. Thanks to the all-optical passive synchronization and all-polarization-maintaining fiber architecture, the implemented laser system was also featured with simplicity, compactness and robustness, which would favor subsequent applications beyond laboratory operation.
Since the 18th National Congress of the Communist Party of China (CPC), remarkable achievements have been made in poverty alleviation. Over the past five years, the population of people living in poverty had decreased by 68.53million, fallen from 98.99 million in 2012 to 30.46 million at the end of 2017. As an impoverished province, Hebei province has been implementing the CPC Central Committee's guidance in the battle against poverty. In 2016, the government released the Implementation Scheme Plan for Improving the Level of Medical Security and Assistance. The plan introduces multi-layer medical security and assistance mechanisms which covers basic medical insurance, major disease insurance and medical assistance. In 2017, the government formulated the Implementation Plan for the Three-Batch Action Plan on the Health Care Program for Poverty Alleviation in Hebei Province, for people with major disease. Hebei Province has carried out many explorations on the health care program for poverty alleviation, and its effectiveness is a problem worthy of attention.
Methods
Based on data including basic medical insurance, major illness insurance, medical assistance, and other related information, we used descriptive statistics and quantitative methods to evaluate the overall expenditure of the poverty alleviation for Hebei province and the areas under its jurisdiction. Additionally, the expenditure of different levels of medical security system, the medical burden for people facing poverty and the distribution of disease in the population with assistance were evaluated.
Results
The out-of-pocket payment per capita has decreased year by year, and it has dropped to 3% of catastrophic medical expenditure and 20% below the poverty line by June 2018. An imbalanced situation occurred with the implementation, with the more impoverished areas having greater the pressure on medical care and poverty alleviation. For people with medical assistance, diseases with higher population and overall expenditure are cerebrovascular disease, malignant tumor, diabetes and some other chronic diseases.
Conclusions
The health policies for poverty alleviation in Hebei province has achieved a remarkable success, and the medical burden of the poor has been significantly reduced. However, the implementation of the policies in various cities has shown an imbalanced situation, and the poverty alleviation policies need to be further improved.
Extensive environmental contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported in hospitals during the coronavirus disease 2019 (COVID-19) pandemic. We report our experience with the practice of directly observed environmental disinfection (DOED) in a community isolation facility (CIF) and a community treatment facility (CTF) in Hong Kong.
Methods:
The CIF, with 250 single-room bungalows in a holiday camp, opened on July 24, 2020, to receive step-down patients from hospitals. The CTF, with 500 beds in open cubicles inside a convention hall, was activated on August 1, 2020, to admit newly diagnosed COVID-19 patients from the community. Healthcare workers (HCWs) and cleaning staff received infection control training to reinforce donning and doffing of personal protective equipment and to understand the practice of DOED, in which the cleaning staff observed patient and staff activities and then performed environmental disinfection immediately thereafter. Supervisors also observed cleaning staff to ensure the quality of work. In the CTF, air and environmental samples were collected on days 7, 14, 21, and 28 for SARS-CoV-2 detection by RT-PCR. Patient compliance with mask wearing was also recorded.
Results:
Of 291 HCWs and 54 cleaning staff who managed 243 patients in the CIF and 674 patients in the CTF from July 24 to August 29, 2020, no one acquired COVID-19. All 24 air samples and 520 environmental samples collected in the patient area of the CTF were negative for SARS-CoV-2. Patient compliance with mask wearing was 100%.
Conclusion:
With appropriate infection control measures, zero environmental contamination and nosocomial transmission of SARS-CoV-2 to HCWs and cleaning staff was achieved.
Solid solution 0.94Na0.5Bi0.5TiO3–6BaTiO3 (NBT–6BT) is considered to be one kind of lead-free piezoelectric materials with excellent electrical properties due to the existence of morphotropic phase boundary (MPB). However, its relatively lower depolarization temperature is a long-standing bottleneck for the application of NBT-based piezoelectric ceramics. In this work, the influence of thermal quenching on depolarization temperature and electrical properties of rare-earth Ho-doped NBT–6BT lead-free ceramics was investigated. It was shown that the relative high piezoelectric performance, as well as an improvement of depolarization temperature (Td), can be realized by thermal quenching. The results showed that the quenching process induced high concentration of oxygen vacancy, giving rise to the change of octahedra mode and enhanced lattice distortion, which is benefit to the temperature stability of piezoelectric and ferroelectric properties. Furthermore, up-conversion photoluminescence (PL) of Ho-doped NBT–6BT could be effectively tuned by the introduction of oxygen vacancy, suggesting a promising potential in optical–electrical multifunctional devices.
Amnestic mild cognitive impairment (aMCI) is characterized by delayed P300 latency and reduced grey matter (GM) volume, respectively. The relationship between the features in aMCI is unclear. This study was to investigate the relationship between the altered P300 latency and the GM volume in aMCI.
Methods
Thirty-four aMCI and 34 well-matched normal controls (NC) were studied using electroencephalogram during a visual oddball task and scanned with MRI. Both tests were finished in the same day.
Results
As compared with the NC group, the aMCI group exhibited delayed P300 latency in parietal cortex and reduced GM volumes in bilateral temporal pole and left hippocampus/parahippocampal gyrus. A remarkable negative correlation was found between delayed P300 latency and reduced left hippocampal volume only in the aMCI group. Interestingly, the mediating analysis found P300 latency significantly mediated the association between right supramarginal gyrus volume and information processing speed indicated by Stroop Color and Word Test A scores.
Conclusions
The association between delayed P300 latency and reduced left hippocampal volume in aMCI subjects suggests that reduced left hippocampal volume may be the potential structural basis of delayed P300 latency.
Organic light-emitting diodes (OLEDs) have aroused great attention due to the advantages of high luminescent efficiency, fast response time, wide viewing angle, and the compatibility with the flexible electronics. Nevertheless, the organic luminescent materials are vulnerable to environment moisture/oxygen. Thus, how to protect the OLEDs from the ambient moisture/oxygen erosion is of great importance to ensure the stability and reliability. Thin film encapsulation (TFE) via atomic layer deposition (ALD) has emerged as a potential method to meet the encapsulation requirements of OLEDs due to its unique assets. In this review, the challenges of TFE, including pinholes, crystallization, cracks, and overheated, are introduced first. The ALD-based monolayer, composite structures, and hybrid laminates were developed to improve the barrier property, flexibility, and thermal conductivity. Besides, the ALD reactors and processes for TFE are also reviewed. Finally, the challenges remained and future development in the stabilization of OLEDs via ALD are also discussed.