We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Individuals with schizophrenia are at higher risk of physical illnesses, which are a major contributor to their 20-year reduced life expectancy. It is currently unknown what causes the increased risk of physical illness in schizophrenia.
Aims
To link genetic data from a clinically ascertained sample of individuals with schizophrenia to anonymised National Health Service (NHS) records. To assess (a) rates of physical illness in those with schizophrenia, and (b) whether physical illness in schizophrenia is associated with genetic liability.
Method
We linked genetic data from a clinically ascertained sample of individuals with schizophrenia (Cardiff Cognition in Schizophrenia participants, n = 896) to anonymised NHS records held in the Secure Anonymised Information Linkage (SAIL) databank. Physical illnesses were defined from the General Practice Database and Patient Episode Database for Wales. Genetic liability for schizophrenia was indexed by (a) rare copy number variants (CNVs), and (b) polygenic risk scores.
Results
Individuals with schizophrenia in SAIL had increased rates of epilepsy (standardised rate ratio (SRR) = 5.34), intellectual disability (SRR = 3.11), type 2 diabetes (SRR = 2.45), congenital disorders (SRR = 1.77), ischaemic heart disease (SRR = 1.57) and smoking (SRR = 1.44) in comparison with the general SAIL population. In those with schizophrenia, carrier status for schizophrenia-associated CNVs and neurodevelopmental disorder-associated CNVs was associated with height (P = 0.015–0.017), with carriers being 7.5–7.7 cm shorter than non-carriers. We did not find evidence that the increased rates of poor physical health outcomes in schizophrenia were associated with genetic liability for the disorder.
Conclusions
This study demonstrates the value of and potential for linking genetic data from clinically ascertained research studies to anonymised health records. The increased risk for physical illness in schizophrenia is not caused by genetic liability for the disorder.
Schizophrenia is a highly heritable disorder with undetermined neurobiological causes. Understanding the impact on brain anatomy of carrying genetic risk for the disorder will contribute to uncovering its neurobiological underpinnings.
Aims
To examine the effect of rare copy number variants (CNVs) associated with schizophrenia on brain cortical anatomy in a sample of unaffected participants from the UK Biobank.
Method
We used regression analyses to compare cortical thickness and surface area (total and across gyri) between 120 unaffected carriers of rare CNVs associated with schizophrenia and 16 670 participants without any pathogenic CNV. A measure of cortical thickness and surface area covariance across gyri was also compared between groups.
Results
Carrier status was associated with reduced surface area (β = −0.020 mm2, P < 0.001) and less robustly with increased cortical thickness (β = 0.015 mm, P = 0.035), and with increased covariance in thickness (carriers z = 0.31 v. non-carriers z = 0.22, P < 0.0005). Associations were mainly present in frontal and parietal areas and driven by a limited number of rare risk alleles included in our analyses (mainly 15q11.2 deletion for surface area and 16p13.11 duplication for thickness covariance).
Conclusions
Results for surface area conformed with previous clinical findings, supporting surface area reductions as an indicator of genetic liability for schizophrenia. Results for cortical thickness, though, argued against its validity as a potential risk marker. Increased structural thickness covariance across gyri also appears related to risk for schizophrenia. The heterogeneity found across the effects of rare risk alleles suggests potential different neurobiological gateways into schizophrenia's phenotype.
The past decade has seen the development of services for adults presenting with symptoms of autism spectrum disorder (ASD) in the UK. Compared with children, little is known about the phenotypic and genetic characteristics of these patients.
Aims
This e-cohort study aimed to examine the phenotypic and genetic characteristics of a clinically presenting sample of adults diagnosed with ASD by specialist services.
Method
Individuals diagnosed with ASD as adults were recruited by the National Centre for Mental Health and completed self-report questionnaires, interviews and provided DNA; 105 eligible individuals were matched to 76 healthy controls. We investigated demographics, social history and comorbid psychiatric and physical disorders. Samples were genotyped, copy number variants (CNVs) were called and polygenic risk scores were calculated.
Results
Of individuals with ASD, 89.5% had at least one comorbid psychiatric diagnosis, with depression (62.9%) and anxiety (55.2%) being the most common. The ASD group experienced more neurological comorbidities than controls, particularly migraine headache. They were less likely to have married or be in work, and had more alcohol-related problems. There was a significantly higher load of autism common genetic variants in the adult ASD group compared with controls, but there was no difference in the rate of rare CNVs.
Conclusions
This study provides important information about psychiatric comorbidity in adult ASD, which may inform clinical practice and patient counselling. It also suggests that the polygenic load of common ASD-associated variants may be important in conferring risk within the non-intellectually disabled population of adults with ASD.
Rare copy number variants (CNVs) are associated with risk of neurodevelopmental disorders characterised by varying degrees of cognitive impairment, including schizophrenia, autism spectrum disorder and intellectual disability. However, the effects of many individual CNVs in carriers without neurodevelopmental disorders are not yet fully understood, and little is known about the effects of reciprocal copy number changes of known pathogenic loci.
Aims
We aimed to analyse the effect of CNV carrier status on cognitive performance and measures of occupational and social outcomes in unaffected individuals from the UK Biobank.
Method
We called CNVs in the full UK Biobank sample and analysed data from 420 247 individuals who passed CNV quality control, reported White British or Irish ancestry and were not diagnosed with neurodevelopmental disorders. We analysed 33 pathogenic CNVs, including their reciprocal deletions/duplications, for association with seven cognitive tests and four general measures of functioning: academic qualifications, occupation, household income and Townsend Deprivation Index.
Results
Most CNVs (24 out of 33) were associated with reduced performance on at least one cognitive test or measure of functioning. The changes on the cognitive tests were modest (average reduction of 0.13 s.d.) but varied markedly between CNVs. All 12 schizophrenia-associated CNVs were associated with significant impairments on measures of functioning.
Conclusions
CNVs implicated in neurodevelopmental disorders, including schizophrenia, are associated with cognitive deficits, even among unaffected individuals. These deficits may be subtle but CNV carriers have significant disadvantages in educational attainment and ability to earn income in adult life.
Declaration of interest
None.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.