We study the effect of severe geometrical confinement in Rayleigh–Bénard convection with a wide range of width-to-height aspect ratio $\unicode[STIX]{x1D6E4}$, $1/128\leqslant \unicode[STIX]{x1D6E4}\leqslant 1$, and Rayleigh number $Ra$, $3\times 10^{4}\leqslant Ra\leqslant 1\times 10^{11}$, at a fixed Prandtl number of $Pr=4.38$ by means of direct numerical simulations in Cartesian geometry with no-slip walls. For convection under geometrical confinement (decreasing $\unicode[STIX]{x1D6E4}$ from 1), three regimes can be recognized (Chong et al., Phys. Rev. Lett., vol. 115, 2015, 264503) based on the global and local properties in terms of heat transport, plume morphology and flow structures. These are Regime I: classical boundary-layer-controlled regime; Regime II: plume-controlled regime; and Regime III: severely confined regime. The study reveals that the transition into Regime III leads to totally different heat and momentum transport scalings and flow topology from the classical regime. The convective heat transfer scaling, in terms of the Nusselt number $Nu$, exhibits the scaling $Nu-1\sim Ra^{0.61}$ over three decades of $Ra$ at $\unicode[STIX]{x1D6E4}=1/128$, which contrasts sharply with the classical scaling $Nu-1\sim Ra^{0.31}$ found at $\unicode[STIX]{x1D6E4}=1$. The flow in Regime III is found to be dominated by finger-like, long-lived plume columns, again in sharp contrast with the mushroom-like, fragmented thermal plumes typically observed in the classical regime. Moreover, we identify a Rayleigh number for regime transition, $Ra^{\ast }=(29.37/\unicode[STIX]{x1D6E4})^{3.23}$, such that the scaling transition in $Nu$ and $Re$ can be clearly demonstrated when plotted against $Ra/Ra^{\ast }$.