We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To compare the nutritional content, serving size and taxation potential of supermarket beverages from four different Western countries.
Design
Cross-sectional analysis. Multivariate regression analysis and χ2 comparisons were used to detect differences between countries.
Setting
Supermarkets in New Zealand (NZ), Australia, Canada and the UK.
Subjects
Supermarket beverages in the following categories: fruit juices, fruit-based drinks, carbonated soda, waters and sports/energy drinks.
Results
A total of 4157 products were analysed, including 749 from NZ, 1738 from Australia, 740 from Canada and 930 from the UK. NZ had the highest percentage of beverages with sugar added to them (52 %), while the UK had the lowest (9 %, P<0·001). Differences in energy, carbohydrate and sugar content were observed between countries and within categories, with UK products generally having the lowest energy and sugar content. Up to half of all products across categories/countries exceeded the US Food and Drug Administration’s reference single serving sizes, with fruit juices contributing the greatest number. Between 47 and 83 % of beverages in the different countries were eligible for sugar taxation, the UK having the lowest proportion of products in both the low tax (5–8 % sugar) and high tax (>8 % sugar) categories.
Conclusions
There is substantial difference between countries in the mean energy, serving size and proportion of products eligible for fiscal sugar taxation. Current self-regulatory approaches used in these countries may not be effective to reduce the availability, marketing and consumption of sugar-sweetened beverages and subsequent intake of free sugars.
Americans consume Na in excess of daily recommendations. Most dietary Na comes from packaged foods, and bread is a major contributor. In the UK, national Na reduction strategies contributed to lower Na levels in packaged foods and lower population Na intake. Similar initiatives are emerging in the USA and require surveillance to assess effectiveness. We aimed to examine Na levels in bread products in the USA and compare levels with similar UK products.
Design
Na data for bread products were obtained from the US Label Insight Open Data Initiative (n 4466) and the FoodSwitch UK database (n 1651). Mean, median and range of Na content, and proportion of products meeting Na targets established by the National Salt Reduction Initiative (NSRI) and the UK Department of Health (DH) were calculated overall, by bread type and by country.
Results
Mean (sd) Na content in bread was 455 (170) mg/100 g in the USA and 406 (179) mg/100 g in the UK. In both countries, savoury bread had the highest mean Na (USA=584 mg/100 g, UK=543 mg/100 g) and fruit bread the lowest mean Na (USA=345 mg/100 g, UK=277 mg/100 g). Na content of US bread products was 12 % higher than in the UK, with 21 % of US bread products and 31 % of UK bread products meeting the NSRI and DH targets, respectively.
Conclusions
US bread products have, on average, 12 % more Na than similar products in the UK. Variation in Na content within product categories, and between countries, suggests the feasibility of manufacturing products with lower Na to lower dietary Na intake.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.