We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, an $\textrm{H}_{{\infty }}$ dynamic output feedback controller is experimentally implemented for the position regulation of a fully actuated tilted-rotor octocopter unmanned aerial vehicle (UAV) to improve wind disturbance rejection during station-keeping. To apply the lateral forces, besides the standard tilt-to-translate (attitude-thrust) movement, tilted-rotor UAVs can generate vectored (horizontal) thrust. Vectored-thrust is high-bandwidth but saturation-constrained, while attitude-thrust generates larger forces with lower bandwidth. For the first time, this paper emphasizes the frequency-dependent allocation of weighting matrices in $\textrm{H}_{{\infty }}$ control design based on the physical capabilities of the fully actuated UAV (vectored-thrust and attitude-thrust). A dynamic model of the tilted-rotor octocopter, including aerodynamic effects and rotor dynamics, is presented to design the controller. The proposed $\textrm{H}_{{\infty }}$ controller solves the frequency-dependent actuator allocation problem by augmenting the dynamic model with weighting transfer functions. This novel frequency-dependent allocation utilizes the attitude-thrust for low-frequency disturbances and vectored-thrust for high-frequency disturbances, which exploits the maximum potential of the fully actuated UAV. Several wind tunnel experiments are conducted to validate the model and wind disturbance rejection performance, and the results are compared to the baseline PX4 Autopilot controller on both the tilted-rotor and a planar octocopter. The $\textrm{H}_{{\infty }}$controller is shown to reduce station-keeping error by up to 50% for an actuator usage 25% higher in free-flight tests.
Modern approaches for exploration path planning generally do not assume any structural information regarding the operational area. Therefore, they offer good performance when the region of interest is entirely unknown. However, for some applications such as plantation forest surveying, partial information regarding the survey area is known before the exploration process. Because the region of interest consists only of the lower portions of the tree stems themselves, the ground and high-elevation sections of the environment are unimportant and do not need to be observed. Due to these unconventional conditions, existing methods favoring faster survey speeds produce suboptimal surveys as they do not try and ensure even coverage across the entire exploration volume, while methods that favor reconstruction accuracy produce excessively long survey times. This work proposes a structured exploration approach specifically for plantation forests utilizing a lawnmowing pattern to maximize coverage while minimizing re-visited regions, guiding the unmanned aerial vehicle to visit all areas. Experiments are conducted in various environments, with comparisons made to state-of-the-art exploration planners regarding survey time and coverage. Results suggest that the proposed methods produce surveys with significantly more predictable coverage and survey times at the expense of a longer survey.
The Mecanum wheel is one of the practical omni-directional wheel designs in industry, especially for heavy-duty tasks in a confined floor. An issue with Mecanum-wheeled robots is inefficient use of energy. In this study, the robotic motion trajectories are optimized to minimize the energy consumption, where a robotic path is expressed in polynomial functions passing through a given set of via points, and a genetic algorithm is used to find the polynomial’s coefficients being decision variables. To attempt a further reduction in the energy consumption, the via points are also taken as decision variables for the optimization. Both simulations and experiments are conducted, and the results show that the optimized trajectories result in a significant reduction in energy consumption, which can be further lowered when the via points become decision variables. It is also found that the higher the order of the polynomials the larger the reduction in the energy consumption.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.