We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Childhood maltreatment (CM) represents a potent risk factor for major depressive disorder (MDD), including poorer treatment response. Altered resting-state connectivity in the fronto-limbic system has been reported in maltreated individuals. However, previous results in smaller samples differ largely regarding localization and direction of effects.
Methods
We included healthy and depressed samples [n = 624 participants with MDD; n = 701 healthy control (HC) participants] that underwent resting-state functional MRI measurements and provided retrospective self-reports of maltreatment using the Childhood Trauma Questionnaire. A-priori defined regions of interest [ROI; amygdala, hippocampus, anterior cingulate cortex (ACC)] were used to calculate seed-to-voxel connectivities.
Results
No significant associations between maltreatment and resting-state connectivity of any ROI were found across MDD and HC participants and no interaction effect with diagnosis became significant. Investigating MDD patients only yielded maltreatment-associated increased connectivity between the amygdala and dorsolateral frontal areas [pFDR < 0.001; η2partial = 0.050; 95%-CI (0.023–0.085)]. This effect was robust across various sensitivity analyses and was associated with concurrent and previous symptom severity. Particularly strong amygdala-frontal associations with maltreatment were observed in acutely depressed individuals [n = 264; pFDR < 0.001; η2partial = 0.091; 95%-CI (0.038–0.166)). Weaker evidence – not surviving correction for multiple ROI analyses – was found for altered supracallosal ACC connectivity in HC individuals associated with maltreatment.
Conclusions
The majority of previous resting-state connectivity correlates of CM could not be replicated in this large-scale study. The strongest evidence was found for clinically relevant maltreatment associations with altered adult amygdala-dorsolateral frontal connectivity in depression. Future studies should explore the relevance of this pathway for a maltreated subgroup of MDD patients.
Relapses in major depression are frequent and are associated with a high burden of disease. Although short-term studies suggest a normalisation of depression-associated brain functional alterations directly after treatment, long-term investigations are sparse.
Aims
To examine brain function during negative emotion processing in association with course of illness over a 2-year span.
Method
In this prospective case–control study, 72 in-patients with current depression and 42 healthy controls were investigated during a negative emotional face processing paradigm, at baseline and after 2 years. According to their course of illness during the study interval, patients were divided into subgroups (n = 25 no-relapse, n = 47 relapse). The differential changes in brain activity were investigated by a group × time analysis of covariance for the amygdala, hippocampus, insula and at whole-brain level.
Results
A significant relapse × time interaction emerged within the amygdala (PTFCE-FWE = 0.011), insula (PTFCE-FWE = 0.001) and at the whole-brain level mainly in the temporal and prefrontal cortex (PTFCE-FWE = 0.027), resulting from activity increases within the no-relapse group, whereas in the relapse group, activity decreased during the study interval. At baseline, the no-relapse group showed amygdala, hippocampus and insula hypoactivity compared with healthy controls and the relapse group.
Conclusions
This study reveals course of illness-associated activity changes in emotion processing areas. Patients in full remission show a normalisation of their baseline hypo-responsiveness to the activation level of healthy controls after 2 years. Brain function during emotion processing could further serve as a potential predictive marker for future relapse.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
Two prominent risk factors for major depressive disorder (MDD) are childhood maltreatment (CM) and familial risk for MDD. Despite having these risk factors, there are individuals who maintain mental health, i.e. are resilient, whereas others develop MDD. It is unclear which brain morphological alterations are associated with this kind of resilience. Interaction analyses of risk and diagnosis status are needed that can account for complex adaptation processes, to identify neural correlates of resilience.
Methods
We analyzed brain structural data (3T magnetic resonance imaging) by means of voxel-based morphometry (CAT12 toolbox), using a 2 × 2 design, comparing four groups (N = 804) that differed in diagnosis (healthy v. MDD) and risk profiles (low-risk, i.e. absence of CM and familial risk v. high-risk, i.e. presence of both CM and familial risk). Using regions of interest (ROIs) from the literature, we conducted an interaction analysis of risk and diagnosis status.
Results
Volume in the left middle frontal gyrus (MFG), part of the dorsolateral prefrontal cortex (DLPFC), was significantly higher in healthy high-risk individuals. There were no significant results for the bilateral superior frontal gyri, frontal poles, pars orbitalis of the inferior frontal gyri, and the right MFG.
Conclusions
The healthy high-risk group had significantly higher volumes in the left DLPFC compared to all other groups. The DLPFC is implicated in cognitive and emotional processes, and higher volume in this area might aid high-risk individuals in adaptive coping in order to maintain mental health. This increased volume might therefore constitute a neural correlate of resilience to MDD in high risk.
Eighty percent of all patients suffering from major depressive disorder (MDD) relapse at least once in their lifetime. Thus, understanding the neurobiological underpinnings of the course of MDD is of utmost importance. A detrimental course of illness in MDD was most consistently associated with superior longitudinal fasciculus (SLF) fiber integrity. As similar associations were, however, found between SLF fiber integrity and acute symptomatology, this study attempts to disentangle associations attributed to current depression from long-term course of illness.
Methods
A total of 531 patients suffering from acute (N = 250) or remitted (N = 281) MDD from the FOR2107-cohort were analyzed in this cross-sectional study using tract-based spatial statistics for diffusion tensor imaging. First, the effects of disease state (acute v. remitted), current symptom severity (BDI-score) and course of illness (number of hospitalizations) on fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity were analyzed separately. Second, disease state and BDI-scores were analyzed in conjunction with the number of hospitalizations to disentangle their effects.
Results
Disease state (pFWE < 0.042) and number of hospitalizations (pFWE< 0.032) were associated with decreased FA and increased MD and RD in the bilateral SLF. A trend was found for the BDI-score (pFWE > 0.067). When analyzed simultaneously only the effect of course of illness remained significant (pFWE < 0.040) mapping to the right SLF.
Conclusions
Decreased FA and increased MD and RD values in the SLF are associated with more hospitalizations when controlling for current psychopathology. SLF fiber integrity could reflect cumulative illness burden at a neurobiological level and should be targeted in future longitudinal analyses.
The general understanding of the ‘vulnerability–stress model’ of mental disorders neglects the modifying impact of resilience-increasing factors such as coping ability.
Aims
Probing a conceptual framework integrating both adverse events and coping factors in an extended ‘vulnerability–stress–coping model’ of mental disorders, the effects of functional neuropeptide S receptor gene (NPSR1) variation (G), early adversity (E) and coping factors (C) on anxiety were addressed in a three-dimensional G × E × C model.
Method
In two independent samples of healthy probands (discovery: n = 1403; replication: n = 630), the interaction of NPSR1 rs324981, childhood trauma (Childhood Trauma Questionnaire, CTQ) and general self-efficacy as a measure of coping ability (General Self-Efficacy Scale, GSE) on trait anxiety (State-Trait Anxiety Inventory) was investigated via hierarchical multiple regression analyses.
Results
In both samples, trait anxiety differed as a function of NPSR1 genotype, CTQ and GSE score (discovery: β = 0.129, P = 3.938 × 10−8; replication: β = 0.102, P = 0.020). In A allele carriers, the relationship between childhood trauma and anxiety was moderated by general self-efficacy: higher self-efficacy and childhood trauma resulted in low anxiety scores, and lower self-efficacy and childhood trauma in higher anxiety levels. In turn, TT homozygotes displayed increased anxiety as a function of childhood adversity unaffected by general self-efficacy.
Conclusions
Functional NPSR1 variation and childhood trauma are suggested as prime moderators in the vulnerability–stress model of anxiety, further modified by the protective effect of self-efficacy. This G × E × C approach – introducing coping as an additional dimension further shaping a G × E risk constellation, thus suggesting a three-dimensional ‘vulnerability–stress–coping model’ of mental disorders – might inform targeted preventive or therapeutic interventions strengthening coping ability to promote resilient functioning.
Electroconvulsive therapy (ECT) is a fast-acting intervention for major depressive disorder. Previous studies indicated neurotrophic effects following ECT that might contribute to changes in white matter brain structure. We investigated the influence of ECT in a non-randomized prospective study focusing on white matter changes over time.
Methods
Twenty-nine severely depressed patients receiving ECT in addition to inpatient treatment, 69 severely depressed patients with inpatient treatment (NON-ECT) and 52 healthy controls (HC) took part in a non-randomized prospective study. Participants were scanned twice, approximately 6 weeks apart, using diffusion tensor imaging, applying tract-based spatial statistics. Additional correlational analyses were conducted in the ECT subsample to investigate the effects of seizure duration and therapeutic response.
Results
Mean diffusivity (MD) increased after ECT in the right hemisphere, which was an ECT-group-specific effect. Seizure duration was associated with decreased fractional anisotropy (FA) following ECT. Longitudinal changes in ECT were not associated with therapy response. However, within the ECT group only, baseline FA was positively and MD negatively associated with post-ECT symptomatology.
Conclusion
Our data suggest that ECT changes white matter integrity, possibly reflecting increased permeability of the blood–brain barrier, resulting in disturbed communication of fibers. Further, baseline diffusion metrics were associated with therapy response. Coherent fiber structure could be a prerequisite for a generalized seizure and inhibitory brain signaling necessary to successfully inhibit increased seizure activity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.