We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Cambridge Core ecommerce is unavailable Sunday 08/12/2024 from 08:00 – 18:00 (GMT). This is due to site maintenance. We apologise for any inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Stricker Learning Span (SLS) is a computer-adaptive word list memory test specifically designed for remote assessment and self-administration on a web-based multi-device platform (Mayo Test Drive). Given recent evidence suggesting the prominence of learning impairment in preclinical Alzheimer’s disease (AD), the SLS places greater emphasis on learning than delayed memory compared to traditional word list memory tests (see Stricker et al., Neuropsychology in press for review and test details). The primary study aim was to establish criterion validity of the SLS by comparing the ability of the remotely-administered SLS and inperson administered Rey Auditory Verbal Learning Test (AVLT) to differentiate biomarkerdefined groups in cognitively unimpaired (CU) individuals on the Alzheimer’s continuum.
Participants and Methods:
Mayo Clinic Study of Aging CU participants (N=319; mean age=71, SD=11; mean education=16, SD=2; 47% female) completed a brief remote cognitive assessment (∼0.5 months from in-person visit). Brain amyloid and brain tau PET scans were available within 3 years. Overlapping groups were formed for 1) those on the Alzheimer’s disease (AD) continuum (A+, n=110) or not (A-, n=209), and for 2) those with biological AD (A+T+, n=43) vs no evidence of AD pathology (A-T-, n=181). Primary neuropsychological outcome variables were sum of trials for both the SLS and AVLT. Secondary outcome variables examined comparability of learning (1-5 total) and delay performances. Linear model ANOVAs were used to investigate biomarker subgroup differences and Hedge’s G effect sizes were derived, with and without adjusting for demographic variables (age, education, sex).
Results:
Both SLS and AVLT performances were worse in the biomarker positive relative to biomarker negative groups (unadjusted p’s<.05). Because biomarker positive groups were significantly older than biomarker negative groups, group differences were attenuated after adjusting for demographic variables, but SLS remained significant for A+ vs A- and for A+T+ vs A-T- comparisons (adjusted p’s<.05) and AVLT approached significance (p’s .05-.10). The effect sizes for the SLS were slightly better (qualitatively, no statistical comparison) for separating biomarker-defined CU groups in comparison to AVLT. For A+ vs A- and A+T+ vs A-T- comparisons, unadjusted effect sizes for SLS were -0.53 and -0.81 and for AVLT were -0.47 and -0.61, respectively; adjusted effect sizes for SLS were -0.25 and -0.42 and for AVLT were -0.19 and -0.26, respectively. In secondary analyses, learning and delay variables were similar in terms of ability to separate biomarker groups. For example, unadjusted effect sizes for SLS learning (-.80) was similar to SLS delay (.76), and AVLT learning (-.58) was similar to AVLT 30-minute delay (-.55) for the A+T+ vs AT- comparison.
Conclusions:
Remotely administered SLS performed similarly to the in-person-administered AVLT in its ability to separate biomarker-defined groups in CU individuals, providing evidence of criterion validity. The SLS showed significantly worse performance in A+ and A+T+ groups (relative to A- and A-T-groups) in this CU sample after demographic adjustment, suggesting potential sensitivity to detecting transitional cognitive decline in preclinical AD. Measures emphasizing learning should be given equal consideration as measures of delayed memory in AD-focused studies, particularly in the preclinical phase.
Mayo Test Drive (MTD): Test Development through Rapid Iteration, Validation and Expansion, is a web-based multi-device (smartphone, tablet, personal computer) platform optimized for remote self-administered cognitive assessment that includes a computer-adaptive word list memory test (Stricker Learning Span; SLS; Stricker et al., 2022; Stricker et al., in press) and a measure of processing speed (Symbols Test: Wilks et al., 2021). Study aims were to determine criterion validity of MTD by comparing the ability of the MTD raw composite and in-person administered cognitive measures to differentiate biomarkerdefined groups in cognitively unimpaired (CU) individuals on the Alzheimer’s continuum.
Participants and Methods:
Mayo Clinic Study of Aging CU participants (N=319; mean age=71, SD=11, range=37-94; mean education=16, SD=2, range=6-20; 47% female) completed a brief remote cognitive assessment (∼0.5 months from in-person visit). Brain amyloid and brain tau PET scans were available within 3 years. Overlapping groups were formed for 1) those on the Alzheimer’s disease (AD) continuum (A+, n=110) or not (A-, n=209), and for 2) those with biological AD (A+T+, n=43) or with no evidence of AD pathology (A-T-, n=181). Primary outcome variables were MTD raw composite (SLS sum of trials + an accuracy-weighted Symbols response time measure), Global-z (average of 9 in-person neuropsychological measures) and an in-person screening measure (Kokmen Short Test of Mental Status, STMS; which is like the MMSE). Linear model ANOVAs were used to investigate biomarker subgroup differences and Hedge’s G effect sizes were derived, with and without adjusting for demographic variables (age, education, sex).
Results:
Remotely administered MTD raw composite showed comparable to slightly larger effect sizes compared to Global-z. Unadjusted effect sizes for MTD raw composite for differentiating A+ vs. A- and A+T+ vs. A-T- groups, respectively, were -0.57 and -0.84 and effect sizes for Global-z were -0.54 and -0.73 (all p’s<.05). Because biomarker positive groups were significantly older than biomarker negative groups, group differences were attenuated after adjusting for demographic variables, but MTD raw composite remained significant for A+T+ vs A-T- (adjusted effect size -0.35, p=.007); Global-z did not reach significance for A+T+ vs A-T- (adjusted effect size -0.19, p=.08). Neither composite reached significance for adjusted analyses for the A+ vs A- comparison (MTD raw composite adjusted effect size= -.22, p=.06; Global-z adjusted effect size= -.08, p=.47). Results were the same for an alternative MTD composite using traditional z-score averaging methods, but the raw score method is preferred for comparability to other screening measures. The STMS screening measure did not differentiate biomarker groups in any analyses (unadjusted and adjusted p’s>.05; d’s -0.23 to 0.05).
Conclusions:
Remotely administered MTD raw composite shows at least similar ability to separate biomarker-defined groups in CU individuals as a Global-z for person-administered measures within a neuropsychological battery, providing evidence of criterion validity. Both the MTD raw composite and Global-z showed greater ability to separate biomarker positive from negative CU groups compared to a typical screening measure (STMS) that was unable to differentiate these groups. MTD may be useful as a screening measure to aid early detection of Alzheimer’s pathological changes.
Normative neuropsychological data are essential for interpretation of test performance in the context of demographic factors. The Mayo Normative Studies (MNS) aim to provide updated normative data for neuropsychological measures administered in the Mayo Clinic Study of Aging (MCSA), a population-based study of aging that randomly samples residents of Olmsted County, Minnesota, from age- and sex-stratified groups. We examined demographic effects on neuropsychological measures and validated the regression-based norms in comparison to existing normative data developed in a similar sample.
Method:
The MNS includes cognitively unimpaired adults ≥30 years of age (n = 4,428) participating in the MCSA. Multivariable linear regressions were used to determine demographic effects on test performance. Regression-based normative formulas were developed by first converting raw scores to normalized scaled scores and then regressing on age, age2, sex, and education. Total and sex-stratified base rates of low scores (T < 40) were examined in an older adult validation sample and compared with Mayo’s Older Americans Normative Studies (MOANS) norms.
Results:
Independent linear regressions revealed variable patterns of linear and/or quadratic effects of age (r2 = 6–27% variance explained), sex (0–13%), and education (2–10%) across measures. MNS norms improved base rates of low performance in the older adult validation sample overall and in sex-specific patterns relative to MOANS.
Conclusions:
Our results demonstrate the need for updated norms that consider complex demographic associations on test performance and that specifically exclude participants with mild cognitive impairment from the normative sample.
The Stricker Learning Span (SLS) is a computer-adaptive digital word list memory test specifically designed for remote assessment and self-administration on a web-based multi-device platform (Mayo Test Drive). We aimed to establish criterion validity of the SLS by comparing its ability to differentiate biomarker-defined groups to the person-administered Rey’s Auditory Verbal Learning Test (AVLT).
Method:
Participants (N = 353; mean age = 71, SD = 11; 93% cognitively unimpaired [CU]) completed the AVLT during an in-person visit, the SLS remotely (within 3 months) and had brain amyloid and tau PET scans available (within 3 years). Overlapping groups were formed for 1) those on the Alzheimer’s disease (AD) continuum (amyloid PET positive, A+, n = 125) or not (A-, n = 228), and those with biological AD (amyloid and tau PET positive, A+T+, n = 55) vs no evidence of AD pathology (A−T−, n = 195). Analyses were repeated among CU participants only.
Results:
The SLS and AVLT showed similar ability to differentiate biomarker-defined groups when comparing AUROCs (p’s > .05). In logistic regression models, SLS contributed significantly to predicting biomarker group beyond age, education, and sex, including when limited to CU participants. Medium (A− vs A+) to large (A−T− vs A+T+) unadjusted effect sizes were observed for both SLS and AVLT. Learning and delay variables were similar in terms of ability to separate biomarker groups.
Conclusions:
Remotely administered SLS performed similarly to in-person-administered AVLT in its ability to separate biomarker-defined groups, providing evidence of criterion validity. Results suggest the SLS may be sensitive to detecting subtle objective cognitive decline in preclinical AD.
Sixteen percent of all motor-vehicle fatalities are pedestrian, and accidents involving pedestrians are associated with the highest morbidity and mortality rates. Classic pedestrian injury patterns have been described. However, it has been suggested that the pattern may differ if the pedestrian is intoxicated. The role of pedestrian intoxication on motor-vehicle accident injury patterns has not been well-delineated.
Hypothesis:
Intoxicated pedestrian traffic victims have an injury pattern that is more serious and more rapidly fatal than is the pattern for nondrinking victims.
Methods:
Autopsies of 223 consecutive pedestrian victims were reviewed and grouped according to the presence of alcohol in the blood: Group I, Negative (n = 165); Group II, Positive (n = 58). Gender, age, anatomic injuries, survival time, time of day, and year also were examined.
Results:
Results indicated that there were more males in Group II (79%) than in Group I (64%); younger victims, younger than 40 years old, in Group II (70%) than in Group I (34%); fewer victims older than 60 years old in Group II (8%) than in Group I (38%). Group II sustained more frequent and more severe injuries—two times the frequency of the cervical spine, liver, upper and lower extremity, pelvic and rib fractures and thoracolumbar spine injuries; three times more aortic injuries; five times more heart injuries. Death occurred within 24 hours in 95% of those in Group II and in 67% of those in Group I. Accidents occurred from 1500h to 2300h in 67% of Group II and in 53% of Group I victims.
Conclusion:
Intoxicated pedestrian accident victims are predominantly young men, struck between 1500h and 0700h; they have an injury pattern that is two to five times more serious than is the pattern for the sober victims.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.