We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Cambridge Core ecommerce is unavailable Sunday 08/12/2024 from 08:00 – 18:00 (GMT). This is due to site maintenance. We apologise for any inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To determine the association between blood markers of white matter injury (e.g., serum neurofilament light and phosphorylated neurofilament heavy) and a novel neuroimaging technique measuring microstructural white matter changes (e.g., diffusion kurtosis imaging) in regions (e.g., anterior thalamic radiation and uncinate fasciculus) known to be impacted in traumatic brain injury (TBI) and associated with symptoms common in those with chronic TBI (e.g., sleep disruption, cognitive and emotional disinhibition) in a heterogeneous sample of Veterans and non-Veterans with a history of remote TBI (i.e., >6 months).
Participants and Methods:
Participants with complete imaging and blood data (N=24) were sampled from a larger multisite study of chronic mild-moderate TBI. Participants ranged in age from young to middle-aged (mean age = 34.17, SD age = 10.96, range = 19-58) and primarily male (66.7%). The number of distinct TBIs ranged from 1-5 and the time since most recent TBI ranged from 0-30 years. Scores on a cognitive screener (MoCA) ranged from 22-30 (mean = 26.75). We performed bivariate correlations with mean kurtosis (MK) in the anterior thalamic radiation (ATR; left, right) uncinate fasciculus (UF; left, right), and serum neurofilament light (NFL), and phosphorylated neurofilament heavy (pNFH). Both were log transformed for non-normality. Significance threshold was set at p<0.05.
Results:
pNFH was significantly and negatively correlated to MK in the right (r=-0.446) and left (r=-0.599) UF and right (r=-0.531) and left (r=-0.469) ATR. NFL showed moderate associations with MK in the right (r=-0.345) and left (r=-0.361) UF and little to small association in the right (r=-0.063) and left (r=-0.215) ATR. In post-hoc analyses, MK in both the left (r=0.434) and right (r=0.514) UF was positively associated with performance on a frontally-mediated list-learning task (California Verbal Learning Test, 2nd Edition; Trials 1-5 total).
Conclusions:
Results suggest that serum pNFH may be a more sensitive blood marker of microstructural complexity in white matter regions frequently impacted by TBI in a chronic mild-moderate TBI sample. Further, it suggests that even years after a mild-moderate TBI, levels of pNFH may be informative regarding white matter integrity in regions related to executive functioning and emotional disinhibition, both of which are common presenting problems when these patients are seen in a clinical setting.
To determine the association between in-vivo spectroscopy metabolite data, the local connectome, and markers of initial injury severity (I.e., history of loss of consciousness; LoC) in traumatic brain injury (TBI), in a heterogenous sample of Veterans and non-Veterans with a history of remote mild-to-moderate TBI (I.e., >6 months).
Participants and Methods:
Participants with complete PRESS magnetic resonance spectroscopy (MRS) and diffusion weighted imaging (DWI) data (N = 41) were sampled from a larger multisite study of chronic mild-to-moderate TBI (Nmiid = 38; Nmoderate = 3; 54% with LoC; 46% with multiple TBI). The sample was predominantly male (76%) with ages ranging from 23-59 (M = 36.9, SD = 10.1), with 98% holding at least a high school degree (M = 14.5 years of education, SD = 2.4). Fully tissue-and-relaxation-corrected metabolite concentration estimates in the dorsal anterior cingulate (30x30x30mm voxel) were modeled using Osprey 2.4.0. Total creatine (tCr), total choline (tCho), total N-acetylaspartate (tNAA), glutamate/glutamine (Glx), and myo-inositol (mI) were analyzed. Logistic regression was used to measure the association between metabolites and history of TBI with LoC. Correlational connectometry using the normalized spin distribution function was performed for metabolites associated with LoC, to characterize the local connectome associated with metabolites of interest, controlling for age and sex, and correcting for multiple comparisons (FDR < .050 with 4000 permutations). A profile approach was used to interpret diffusion metrics, contrasting quantitative anisotropy (QA) with fractional anisotropy (FA). Local connectome tracks were then clustered to identify the larger white matter tract.
Results:
Glx (p = .008) and tCr (p = .032) were significantly associated with history of TBI with LoC. Increased Glx was associated with increased QA in 11,001 tracks, accounting for 1.4% of the total white matter tracks in the brain. 90% of tracks were identified in bilateral cingulum (33%), bilateral thalamic (13%), bilateral corticospinal (13%), corpus callosum (12%), left arcuate fasciculus (9%), left frontoparietal aslant tracts (6%), and bilateral inferior fronto-occipital fasciculus (4%) tracts. In contrast, FA was not associated with Glx. The same pattern emerged for tCr, with 10,542 tracks identified predominantly in bilateral cingulum (29%), corpus callosum (21%), bilateral corticospinal (15%), bilateral corticostriatal (7%), bilateral medial lemniscus (7%), left cortico-pontine (3%), left thalamic (2%), and bilateral superior longitudinal fasciculus (2%) tracts. Post-hoc exploratory analyses of mean QA across regions of cingulum found that increased QA was associated with self-report measures of headache intensity, fatigue, and perceived change in executive functioning.
Conclusions:
Results provided evidence that multimodal imaging can identify subtle markers of initial TBI severity years after injury. Neurometabolite concentrations were associated with diffuse changes in the local connectome; the pattern of discrepancy between FA and QA was suggestive of reduced potential for neuroplasticity. Exploratory analyses further indicated that variability in white matter density in the cingulum, an important connection for limbic regions, was associated with a range of problems commonly reported in clinical settings, which may be informative for diagnosis and treatment planning.
Determine associations between cognitive outcomes in remote TBI (i.e., at least 6 months post injury), a blood marker of neural degeneration (i.e., Tau), and diffusion kurtosis imaging (DKI) measures (e.g., mean or radial kurtosis). Because DKI imaging is sensitive to the environmental complexity of the imaged area, we sought to investigate regions known to be associated with the cognitive and emotional sequalae of TBI, such as the anterior thalamic radiations, uncinate fasciculus, and the corpus callosum.
Participants and Methods:
41 individuals with mild-to-moderate TBI and a mean age(SD) of 36.1(10.4) years underwent DKI, a blood draw, and neuropsychological assessments. 23 healthy controls (HC) with a mean age(SD) of 35.2(15.2) years underwent the blood draw and assessments, but no imaging. Higher diffusion kurtosis indicates more restricted diffusion, possibly due to greater complexity within the imaged region. Thus, in the context of TBI, DKI can be used as a proxy measurement for biological processes that alter the complexity of imaged environments, such as reactive gliosis. Some people show cognitive deficits long after TBI and this could be associated with increased inflammation and membrane protein aggregates in damaged brain regions. We used bivariate correlations and general linear models to investigate the association of mean kurtosis (MK) in long white matter tracts and Tau (total or phosphorylated) to color-word Stroop scores; a measure of fronto-subcortical function.
Results:
In patients with TBI, MK was significantly associated with serum total Tau (TTau) in the right (r=-0.396) and left (r=-0.555) uncinate fasciculus (UF), right (r=-0.402) and left (r=-0.504) anterior thalamic radiations (ATR), and the genu (r=-0.526) and body (r=-0.404) of the corpus callosum (CC). TTau had a significant association with word Stroop scores, F(1,63)=-2.546, p=0.013. However, there was no significant effect of group (i.e., TBI or HC), F(2,63)=-0.426, p=0.672, on cognitive performance. When models were implemented that included both TTau and MK in either the UF or ATR as explanatory variables to predict word Stroop scores, TTau levels and MK in the right UF explained a significant amount of the variance in Stroop performance, F(1,29)=2.215, p=0.025. Further, there was also a significant association between radial kurtosis in the right UF and Stroop word scores (r= 0.366).
Conclusions:
Our results show that an indicator of biological complexity (DKI) in cognitively important brain regions is associated with cognitive performance and Tau in patients with remote mild-to-moderate TBI. The UF is a critical fronto-temporal/subcortical pathway that has previously been implicated in the manifestation of executive dysfunction and mood dysregulation in TBI. Tau is an important marker of neurodegeneration implicated in Alzheimer’s disease, Parkinson’s disease, and chronic traumatic encephalopathy (CTE), and DKI is potentially sensitive to markers of neurodegeneration. The association of Tau and DKI measures is novel and shows concordance between blood and brain imaging markers and cognitive performance in patients with mild to moderate TBI.
To measure the impact of an automated hand hygiene monitoring system (AHHMS) and an intervention program of complementary strategies on hand hygiene (HH) performance in both acute-care and long-term care (LTC) units.
Single Veterans Affairs Medical Center (VAMC), with 2 acute-care units and 6 LTC units.
Methods:
An AHHMS that provides group HH performance rates was implemented on 8 units at a VAMC from March 2021 through April 2022. After a 4-week baseline period and 2.5-week washout period, the 52-week intervention period included multiple evidence-based components designed to improve HH compliance. Unit HH performance rates were expressed as the number of dispenses (events) divided by the number of patient room entries and exits (opportunities) × 100. Statistical analysis was performed with a Poisson general additive mixed model.
Results:
During the 4-week baseline period, the median HH performance rate was 18.6 (95% CI, 16.5–21.0) for all 8 units. During the intervention period, the median HH rate increased to 21.6 (95% CI, 19.1–24.4; P < .0001), and during the last 4 weeks of the intervention period (exactly 1 year after baseline), the 8 units exhibited a median HH rate of 25.1 (95% CI, 22.2–28.4; P < .0001). The median HH rate increased from 17.5 to 20.0 (P < .0001) in LTC units and from 22.9 to 27.2 (P < .0001) in acute-care units.
Conclusions:
The intervention was associated with increased HH performance rates for all units. The performance of acute-care units was consistently higher than LTC units, which have more visitors and more mobile veterans.
The introduction of new fuels into the market is a unique opportunity to take advantage of new fuel compositions to improve the efficiency and emissions of internal combustion reciprocating engines and alternative fuel feedstocks. However, there are numerous challenges that introductions of new fuels face before they can become first legal, then ubiquitous. This chapter reviews four different case studies related to changing fuel composition. In some circumstances, the fuel formulation was changed in seemingly minor ways, and resulted in the unanticipated consequences. In other cases, a fuel change was desired, but an unexpected barrier slowed the introduction of the fuel change. These case studies should be viewed as opportunities to understand the interdependencies that exist and factors that need to be considered when trying to change the fuel in the marketplace.
The introduction of new fuels into the market is a unique opportunity to take advantage of new fuel compositions to improve the efficiency and emissions of internal combustion reciprocating engines and alternative fuel feedstocks. However, there are numerous challenges that introductions of new fuels face before they can become first legal, then ubiquitous. This chapter reviews four different case studies related to changing fuel composition. In some circumstances, the fuel formulation was changed in seemingly minor ways, and resulted in the unanticipated consequences. In other cases, a fuel change was desired, but an unexpected barrier slowed the introduction of the fuel change. These case studies should be viewed as opportunities to understand the interdependencies that exist and factors that need to be considered when trying to change the fuel in the marketplace.
To determine how engagement of the hospital and/or vendor with performance improvement strategies combined with an automated hand hygiene monitoring system (AHHMS) influence hand hygiene (HH) performance rates.
The study was conducted in 58 adult and pediatric inpatient units located in 10 hospitals.
Methods:
HH performance rates were estimated using an AHHMS. Rates were expressed as the number of soap and alcohol-based hand rub portions dispensed divided by the number of room entries and exits. Each hospital self-assigned to one of the following intervention groups: AHHMS alone (control group), AHHMS plus clinician-based vendor support (vendor-only group), AHHMS plus hospital-led unit-based initiatives (hospital-only group), or AHHMS plus clinician-based vendor support and hospital-led unit-based initiatives (vendor-plus-hospital group). Each hospital unit produced 1–2 months of baseline HH performance data immediately after AHHMS installation before implementing initiatives.
Results:
Hospital units in the vendor-plus-hospital group had a statistically significant increase of at least 46% in HH performance compared with units in the other 3 groups (P ≤ .006). Units in the hospital only group achieved a 1.3% increase in HH performance compared with units that had AHHMS alone (P = .950). Units with AHHMS plus other initiatives each had a larger change in HH performance rates over their baseline than those in the AHHMS-alone group (P < 0.001).
Conclusions:
AHHMS combined with clinician-based vendor support and hospital-led unit-based initiatives resulted in the greatest improvements in HH performance. These results illustrate the value of a collaborative partnership between the hospital and the AHHMS vendor.
A previous meta-analysis of dimensional structure research published during the latter half of the 20th century revealed significant intercorrelation among structural dimensions inspired by Max Weber's bureaucratic ideal type, providing support for continued research on dimensional structures and for the bureaucratic structural model that served as its theoretical foundation. A new meta-analysis reported in this article, motivated by questions regarding the continued applicability of bureaucratic dimensional models in the later era of new organization forms, indicates that many of the interrelationships among five structural dimensions (formalization, standardization, specialization, vertical differentiation, and decentralization) have weakened since the time of the earlier meta-analysis. The results of this study, conducted using a sample of 346 correlations from a collection of 155 published articles, are interpreted as failing to provide consistent evidence supporting a central tenet of the bureaucratic structural model, therefore, as indicating that dimensional structural research now lacks a viable theoretical foundation.
Many China watchers argue that Xi Jinping has concentrated power in his own hands in a manner unprecedented since the death of Mao Zedong and Deng Xiaoping. This article tests the extent of Xi's power consolidation by comparing the strength of his faction during his time in power to similar periods under his two immediate predecessors, Jiang Zemin and Hu Jintao. Furthermore, we investigate whether a dominant faction is emerging under Xi Jinping, replacing the power balancing between factions that was the norm throughout the reform era. Analysing factional affiliations of Chinese leaders in the top four ranks, we find that Xi has formed a dominant faction. Through statistical analysis of the promotion chances of provincial leaders, we find that Xi has been unusually successful when compared to previous leaders at promoting his clients. This suggests that Xi has boosted the power of his faction by elevating provincial leaders to an extent not seen since the death of Mao and Deng.
The coronavirus disease 2019 (COVID-19) pandemic has resulted in shortages of personal protective equipment (PPE), underscoring the urgent need for simple, efficient, and inexpensive methods to decontaminate masks and respirators exposed to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). We hypothesized that methylene blue (MB) photochemical treatment, which has various clinical applications, could decontaminate PPE contaminated with coronavirus.
Design:
The 2 arms of the study included (1) PPE inoculation with coronaviruses followed by MB with light (MBL) decontamination treatment and (2) PPE treatment with MBL for 5 cycles of decontamination to determine maintenance of PPE performance.
Methods:
MBL treatment was used to inactivate coronaviruses on 3 N95 filtering facepiece respirator (FFR) and 2 medical mask models. We inoculated FFR and medical mask materials with 3 coronaviruses, including SARS-CoV-2, and we treated them with 10 µM MB and exposed them to 50,000 lux of white light or 12,500 lux of red light for 30 minutes. In parallel, integrity was assessed after 5 cycles of decontamination using multiple US and international test methods, and the process was compared with the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O3) decontamination method.
Results:
Overall, MBL robustly and consistently inactivated all 3 coronaviruses with 99.8% to >99.9% virus inactivation across all FFRs and medical masks tested. FFR and medical mask integrity was maintained after 5 cycles of MBL treatment, whereas 1 FFR model failed after 5 cycles of VHP+O3.
Conclusions:
MBL treatment decontaminated respirators and masks by inactivating 3 tested coronaviruses without compromising integrity through 5 cycles of decontamination. MBL decontamination is effective, is low cost, and does not require specialized equipment, making it applicable in low- to high-resource settings.
Determine the impact of an automated hand hygiene monitoring system (AHHMS) plus complementary strategies on hand hygiene performance rates and healthcare-associated infections (HAIs).
Hand hygiene compliance rates were estimated using direct observations. An AHHMS, installed on 4 nursing units in a sequential manner, determined hand hygiene performance rates, expressed as the number of hand hygiene events performed upon entering and exiting patient rooms divided by the number of room entries and exits. Additional strategies implemented to improve hand hygiene included goal setting, hospital leadership support, feeding AHHMS data back to healthcare personnel, and use of Toyota Kata performance improvement methods. HAIs were defined using National Healthcare Safety Network criteria.
Results:
Hand hygiene compliance rates generated by direct observation were substantially higher than performance rates generated by the AHHMS. Installation of the AHHMS without supplementary activities did not yield sustained improvement in hand hygiene performance rates. Implementing several supplementary strategies resulted in a statistically significant 85% increase in hand hygiene performance rates (P < .0001). The incidence density of non–Clostridioies difficile HAIs decreased by 56% (P = .0841), while C. difficile infections increased by 60% (P = .0533) driven by 2 of the 4 study units.
Conclusion:
Implementation of an AHHMS, when combined with several supplementary strategies as part of a multimodal program, resulted in significantly improved hand hygiene performance rates. Reductions in non–C. difficile HAIs occurred but were not statistically significant.
This Research Communication describes an investigation of the nutritional depletion of total mixed rations (TMR) by pest birds. We hypothesized that species-specific bird depredation of TMR can alter the nutritional composition of the ration and that these changes can negatively impact the performance of dairy cows. Blackbirds selected the high energy fraction of the TMR (i.e., flaked corn) and reduced starch, crude fat and total digestible nutrients during controlled feeding experiments. For Holsteins producing 37·1 kg of milk/d, dairy production modeling illustrated that total required net energy intake (NEI) was 35·8 Mcal/d. For the reference TMR unexposed to blackbirds and the blackbird-consumed TMR, NEI supplied was 41·2 and 37·8 Mcal/d, and the resulting energy balance was 5·4 and 2·0 Mcal/d, respectively. Thus, Holsteins fed the reference and blackbird-consumed TMR were estimated to gain one body condition score in 96 and 254 d, and experience daily weight change due to reserves of 1·1 and 0·4 kg/d, respectively. We discuss these results in context of an integrated pest management program for mitigating the depredation caused by pest birds at commercial dairies.
The development of the unsteady pressure field on the floor of a rectangular cavity was studied at Mach 0.9 using high-frequency pressure-sensitive paint. Power spectral amplitudes at each cavity resonance exhibit a spatial distribution with a streamwise-oscillatory pattern; additional maxima and minima appear as the mode number is increased. This spatial distribution also appears in the propagation velocity of modal pressure disturbances. This behaviour was tied to the superposition of a downstream-propagating shear-layer disturbance and an upstream-propagating acoustic wave of different amplitudes and convection velocities, consistent with the classical Rossiter model. The summation of these waves generates a net downstream-travelling wave whose amplitude and phase velocity are modulated by a fixed envelope within the cavity. This travelling-wave interpretation of the Rossiter model correctly predicts the instantaneous modal pressure behaviour in the cavity. Subtle spanwise variations in the modal pressure behaviour were also observed, which could be attributed to a shift in the resonance pattern as a result of spillage effects at the edges of the finite-width cavity.
Loess is common in the Mid-Atlantic region of the United States south of the Late Wisconsinan glacial border particularly along rivers draining the glaciated areas of Pennsylvania, New Jersey, and New York. The broadest deposits occur on the flat landscapes of the Delmarva Peninsula in Maryland where two episodes of deposition have been identified. The earlier Miles Point Loess has a limited distribution and is buried by the more widespread Paw Paw Loess. OSL and 14C dates place deposition of the Miles Point Loess during MIS 3. The well developed paleosol formed in the Miles Point Loess acts as a stratigraphic marker. The Paw Paw Loess buries Clovis age cultural materials which date deposition to the end of the Pleistocene. Loess deposits and paleosols are critical in understanding regional landscape evolution, Late Pleistocene environments, and early North American cultural history. Mapping the extent of loess in the Mid-Atlantic using the Natural Resources Conservation Service’s gSSURGO database overrepresents loess in some areas and underrepresents in others.
Bach to Brahms presents current analytic views by established scholars of the traditional tonal repertoire, with essays on works by Bach, Handel, Haydn, Mozart, Beethoven, Schubert, Chopin, and Brahms. The fifteen essays are divided into three groups, two of which focus primarily on the interaction of elements of musical design (formal, metric, and tonal organization) and voice leading at multiple levels of structure. The third group of essays focusses on the 'motive' from different perspectives. The result is a volume of integrated studies on the music of the common-practice period, a body of music that remains at the core of modern concert and classroom repertoire. Contributors: Eytan Agmon, David Beach, Charles Burkhart, L. Poundie Burstein, Yosef Goldenberg, Timothy Jackson, William Kinderman, Joel Lester, Boyd Pomeroy, John Rink, Frank Samarotto, Lauri Suurpää, Naphtali Wagner, Eric Wen, Channan Willner. David Beach is professor emeritus and former dean of the Faculty of Music, University of Toronto. Recent publications include Advanced Schenkerian Analysis, and Analysis of 18th- and 19th-Century Musical Works in the Classical Tradition (co-authored with Ryan McClelland). Yosef Goldenberg teaches at the Hebrew University of Jerusalem and at the Jerusalem Academy of Music and Dance, where he also serves as head librarian. He is the author of Prolongation of Seventh Chords in Tonal Music (Edwin Mellen Press, 2008) and published in leading journals on music theory and on Israeli music.
Commercially available cabinet sprayers are not well suited for making low volume applications (<30 L/ha) of herbicides to woody forest species that can be up to 1.5 m tall. A simple, inexpensive laboratory sprayer that overcomes some limitations of commercial cabinet sprays can be built from materials readily available at local building and electronic suppliers. The only specialized equipment required is a positive displacement pump and a rotary disk atomizer. The atomizer is attached to the end of a variable height arm mounted on a laboratory cart. A positive displacement pump ensures controlled flow. The operator pushes the cart along a metal rub rail which keeps the cart tracking in a straight line. Travel speed is regulated by the operator following a marker on a clothesline-like loop of fishing line and is driven by a variable-speed drill attached to a variable voltage power supply.
When herbicide concentration was constant, absorption of 14C-glyphosate increased with increasing droplet size (326 to 977 μm). Amount of 14C-glyphosate translocated away from the treated area, expressed as percent of absorbed, increased as droplet size decreased. Herbicide concentration of the droplet was more important than droplet number or droplet size in determining glyphosate absorption and translocation. Absorption and translocation increased with increasing herbicide concentration regardless of whether droplet size or number was altered in conjunction with herbicide concentration. This relationship explained why low spray volume (increased herbicide concentration) increased herbicide efficacy. The concentration gradient between droplet and leaf, rather than droplet coverage, was the primary mechanism responsible for the observed effect. Large droplets caused localized tissue injury, which may have caused decreased translocation.
Geochemical and related studies have been made of near-surface sediments from the River Clyde estuary and adjoining areas, extending from Glasgow to the N, and W as far as the Holy Loch on the W coast of Scotland, UK. Multibeam echosounder, sidescan sonar and shallow seismic data, taken with core information, indicate that a shallow layer of modern sediment, often less than a metre thick, rests on earlier glacial and post-glacial sediments. The offshore Quaternary history can be aligned with onshore sequences, with the recognition of buried drumlins, settlement of muds from quieter water, probably behind an ice dam, and later tidal delta deposits. The geochemistry of contaminants within the cores also indicates shallow contaminated sediments, often resting on pristine pre-industrial deposits at depths less than 1m. The distribution of different contaminants with depth in the sediment, such as Pb (and Pb isotopes), organics and radionuclides, allow chronologies of contamination from different sources to be suggested. Dating was also attempted using microfossils, radiocarbon and 210Pb, but with limited success. Some of the spatial distribution of contaminants in the surface sediments can be related to grain-size variations. Contaminants are highest, both in absolute terms and in enrichment relative to the natural background, in the urban and inner estuary and in the Holy Loch, reflecting the concentration of industrial activity.