We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The objective of this study was to test the hypothesis that equine growth hormone (eGH), in combination with insulin growth factor-I (IGF-I), influences positively in vitro nuclear and cytoplasmic maturation of equine oocytes. Cumulus–oocyte complexes were recovered from follicles that were < 25 mm in diameter, characterized by morphology and were allocated randomly as follow: (a) control (no additives); (b) 400 ng/ml eGH; (c) 200 ng/ml IGF-I; (d) eGH + IGF-I; and (e) eGH + IGF-I + 400 ng/ml anti-IGF-I antibody. Oocytes were matured for 30 h at 38.5°C in air with 5% CO2 and then stained with 10 μg/ml propidium iodide (PI) to evaluate nuclear status and 10 μg/ml Lens culinaris agglutinin-fluorescein complex (FITC-LCA) to assess cortical granule migration by confocal microscopy. The proportion of immature oocytes that developed to the metaphase II (MII) stage in the eGH + IGF-I group (15 of 45) was greater than in the groups that were treated only with IGF-I (7 of 36, p = 0.03). Oocytes that reached MII in the control group (20 of 56; 35.7%) showed a tendency to be different when compared with eGH + IGF-I group (15 of 45; 33.3%, p = 0.08). The treated group that contained anti-IGF-I (15 of 33; 45.4%) decreased the number of oocytes reaching any stage of development when compared with eGH (47 of 72; 65.3%) and eGH + IGF-I (33 of 45; 73.3%) groups (p = 0.05) when data from MI and MII were combined. We concluded that the addition of eGH to in vitro maturation (IVM) medium influenced the in vitro nuclear and cytoplasmic maturation of equine oocytes. The use of GH and IGF-I in vitro may represent a potential alternative for IVM of equine oocytes.
The mesolimbic dopamine system plays a critical role in the reinforcing effects of rewards. Evidence from pre-clinical studies suggests that D3 receptor antagonists may attenuate the motivational impact of rewarding cues. In this study we examined the acute effects of the D3 receptor antagonist GSK598809 on attentional bias to rewarding food cues in overweight to obese individuals (n=26, BMI mean=32.7±3.7, range 27–40 kg/m2) who reported binge and emotional eating. We also determined whether individual differences in restrained eating style modulated the effects of GSK598809 on attentional bias. The study utilized a randomized, double-blind, placebo-controlled cross-over design with each participant tested following acute administration of placebo and GSK598809 (175 mg). Attentional bias was assessed by the visual probe task and modified Stroop task using food-related words. Overall GSK598809 had no effects on attentional bias in either the visual probe or food Stroop tasks. However, the effect of GSK598809 on both visual probe and food Stroop attentional bias scores was inversely correlated with a measure of eating restraint allowing the identification of two subpopulations, low- and high-restrained eaters. Low-restrained eaters had a significant attentional bias towards food cues in both tasks under placebo, and this was attenuated by GSK598809. In contrast, high-restrained eaters showed no attentional bias to food cues following either placebo or GSK598809. These findings suggest that excessive attentional bias to food cues generated by individual differences in eating traits can be modulated by D3 receptor antagonists, warranting further investigation with measures of eating behaviour and weight loss.