We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Excavation at Mogou, a Bronze Age cemetery containing over 1700 burials and 6000 individuals, has revealed a diverse range of multiple burials. Building on this dataset, the Mogou Multidisciplinary Investigation Project aims to explore connections between kinship, burial space and social organisation in Bronze Age north-west China.
The provenance and tectonic setting of the Lower–Middle Triassic clastic sediments from the Napo basin, South China, have been examined here using detrital modes, whole-rock geochemistry and detrital zircon U–Pb ages. Field investigations indicate that these sediments consist of fan delta, slope and turbidity fan facies with dominantly southward palaeocurrent directions. Detrital modes and geochemical characteristics of the clastic rocks indicate that they were derived from mixed magmatic arc and Palaeozoic successions in a continental island arc setting, with no significant sediment recycling. The U–Pb age spectra of sandstone detrital zircons from different stratigraphic positions are similar, with one major group (300–230 Ma), two subordinate groups (400–320 Ma and 480–420 Ma, respectively) and two scattered groups (1200–800 Ma and 2000–1700 Ma, respectively). Thus, we consider that the north late Permian – Middle Triassic volcanic rocks and the uplifted Palaeozoic sedimentary/volcanic sequences constituted the predominant sources. The detritus derived from the late Permian Emeishan mafic rocks is subordinate and limited. The pre-Devonian zircons are likely sedimentary-recycled or magmatic-captured instead of directly derived from the early Palaeozoic orogen (e.g. Yunkai massif) and Neoproterozoic Jiangnan orogen because of the topographic barrier of a magmatic arc and carbonate platform. Considering the spatial and temporal distribution characteristics of the volcanic arc and ophiolite, we suggest that the Triassic Napo basin was a fore-arc basin within a continental island arc setting, which developed in response to the northward subduction of the Babu–Cao Bang branch ocean beneath the South China Block.
Upper Ordovician strata exposed from the Baiyanhuashan section is the most representative Late Ordovician unit in the northwestern margin of the North China Craton (NCC). In total, 1,215 conodont specimens were obtained from 24 samples through the Wulanhudong and Baiyanhuashan formations at the Baiyanhuashan section. Thirty-six species belonging to 17 genera, including Tasmanognathus coronatus new species, are present. Based on this material, three conodont biozones—the Belodina confluens Biozone, the Yaoxianognathus neimengguensis Biozone, and the Yaoxianognathus yaoxianensis Biozone—have been documented, suggesting that the Baiyanhuashan conodont fauna has a stratigraphic range spanning the early to middle Katian. The Baiyanhuashan conodont fauna includes species both endemic to North China and widespread in tropical zones, allowing a reassessment of the previous correlations of the Katian conodont zonal successions proposed for North China with those established for shallow-water carbonate platforms at low latitudes.
To determine which set of BMI cut-offs is the most appropriate to define child and adolescent obesity in urban China.
Design:
A cross-sectional study was carried out between 1 November and 31 December in 2017.
Setting:
Community Healthcare Center in Minhang District, Shanghai, China.
Participants:
A total of 12 426 children and adolescents aged 7–17 years were selected by cluster random sampling. Bioelectrical impedance analysis was the gold standard to measure body composition.
Results:
Comparisons of three sets of BMI cut-offs by sensitivity and κ value revealed that the Working Group on Obesity in China (WGOC) (sensitivity 39·9–84·0 %; κ 0·51–0·79) and WHO (sensitivity 25·5–74·5 %; κ 0·35–0·78) cut-offs were not superior to the International Obesity Task Force (IOTF) (sensitivity 47·9–92·4 %; κ 0·58–0·85) cut-offs across all subgroups. The WGOC and WHO cut-offs yielded higher misclassification rates, in the worst case, categorising 11·2 % of girls with high adiposity as normal and 44·4 % of them as overweight, while the IOTF cut-offs categorised 2·3 % as normal and 30·7 % as overweight. Individuals who were classified by the IOTF cut-offs as overweight had the lowest ratios of high adiposity (4·2–41·6 %) than by the BMI cut-offs for each subgroup. Among pubertal girls, none of the BMI-based cut-offs indicated excellent agreement with body fat percentage, and κ value of the WHO cut-offs (0·35 (95 % CI 0·29, 0·41)) was lower than the other two sets of BMI cut-offs (all P < 0·001).
Conclusions:
The IOTF cut-offs for Asian should be recommended for child obesity screening in urban China. Pubertal individuals need a more accurate indicator of obesity screening.
Identifying risk factors and mortality of individuals with Alzheimer’s disease (AD) could have important implications for the clinical management of AD.
Objective:
This pilot study aimed to examine the overall mortality of AD patients over a 10-year surveillance period in Shanghai, China. This study is an extension of our previous investigation on mortality of neurodegenerative diseases.
Methods:
One hundred and thirty-two AD patients recruited from the memory clinics of two hospitals in Shanghai in 2007 were followed up until December 31, 2017 or death, representing a follow-up period of up to 10 years. Overall standardized mortality ratios (SMRs) were calculated, and predictors for survival at recruitment were estimated.
Results:
Sixty-seven patients had died by December 31, 2017, and the SMR at 10 years of follow-up was 1.225 (95% confidence interval 0.944–1.563). Employing Cox’s proportional hazard modeling, lower Mini-Mental State Examination score, and comorbid diabetes predicted poor survival in this cohort.
Conclusion:
This pilot study suggests a similar survival trend of patients with AD compared to the general population in Shanghai urban region. Poor cognitive status and comorbid diabetes had a negative impact on the survival of AD patients.
Silk and carbon nanomaterials, such as graphene oxide, graphene, and carbon nanotubes, have complementary mechanical properties that feature superior toughness and strength, respectively. Different strategies have been devoted to developing silk/carbon nanocomposites, but challenges remain to fully integrate the mechanical advantages of these two components into one synergistic material system. In this article, we provide a critical summary of structure–mechanics relationships in silk/carbon nanocomposites and highlight the impact of the interaction between silk and carbon nanomaterials on mechanical properties of the hybrid materials. We describe the challenges involved and directions for future designs of silk/carbon nanocomposites.
Scabies is a parasitic disease caused by the ectoparasite Sarcoptes scabiei, affecting different mammalian species, including rabbits, worldwide. In the present study, we cloned and expressed a novel inorganic pyrophosphatase, Ssc-PYP-1, from S. scabiei var. cuniculi. Immunofluorescence staining showed that native Ssc-PYP-1 was localized in the tegument around the mouthparts and the entire legs, as well as in the cuticle of the mites. Interestingly, obvious staining was also observed on the fecal pellets of mites and in the integument of the mites. Based on its good immunoreactivity, an indirect enzyme-linked immunosorbent assay (ELISA) using recombinant Ssc-PYP-1 (rSsc-PYP-1) as the capture antigen was developed to diagnose sarcoptic mange in naturally infected rabbits; the assay had a sensitivity of 92·0% and specificity of 93·6%. Finally, using the rSsc-PYP-1-ELISA, the Ssc-PYP-1 antibody from 10 experimentally infected rabbits could be detected from 1 week post-infection. This is the first report of S. scabiei inorganic pyrophosphatase and the protein could serve as a potential serodiagnostic candidate for sarcoptic mange in rabbits.
Disclosing the diagnosis of Alzheimer's disease (AD) to a patient is controversial. There is significant stigma associated with a diagnosis of AD or dementia in China, but the attitude of the society toward disclosure of such a diagnosis had not been formally evaluated prior to our study. Therefore, we aimed to evaluate the attitude toward disclosing an AD diagnosis to patients in China with cognitive impairment from their caregivers, and the factors that may affect their attitude.
Methods:
We designed a 17-item questionnaire and administered this questionnaire to caregivers, who accompanied patients with cognitive impairment or dementia in three major hospitals in Shanghai, China. The caregiver's attitude toward disclosing the diagnosis of AD as evaluated by the questionnaire was compared to that of disclosing the diagnosis of terminal cancer.
Results:
A majority (95.7%) of the 175 interviewed participants (mean 14.2 years of education received) wished to know their own diagnosis if they were diagnosed with AD, and 97.6% preferred the doctor to tell their family members if they were diagnosed with AD. If a family member of the participants suffered from AD, 82.9% preferred to have the diagnosis disclosed to the patient. “Cognitive impairment” was the most accepted term by caregivers to disclose AD diagnosis in Chinese.
Conclusion:
This study suggests most of the well-educated individuals in a Chinese urban area favored disclosing the diagnosis when they or their family members were diagnosed with AD.
A new method, called Cloud of Points (COP) Reconstruction, is proposed in the present work to extend the meshfree method to simulate viscous flows. With the characters of viscous flows, the anisotropic COP structure is distributed in boundary layer. The proposed method can improve the anisotropic COP structure to isotropic COP structure and reduce the condition number of the least square coefficient matrix for conventional meshfree method. The values of the new reconstructed points are calculated by the Lagrange interpolation. The accuracy and the robustness of the presented meshfree solver are demonstrated on a number of standard test cases, including the functions with analytical gradients and the viscous flows past NACA0012 airfoil. The comparison of the simulation results with the experimental data and other numerical simulation data are also investigated.
In a transitional economy such as China's, when resources are unevenly distributed across different sectors, the disadvantaged sector may seek a growth path that bypasses resource constraints. We investigated this phenomenon in the context of the Chinese real estate industry. By comparing the post–merger and acquisition (M&A) performance of acquiring firms between state-owned enterprises (SOEs) and privately-owned enterprises (POEs), we attempted to show that POEs are better performers in the market should they be granted equitable resources, and the superior performance is strengthened by market-oriented institutional environment. We used M&A events data of publicly listed real estate firms in China from 2004 to 2012, in conjunction with firm characteristics and province-level market environment data. We found the results to be consistent with our hypotheses. In particular, compared to SOEs, privately-owned acquiring firms tend to have better post-M&A performance when both the regions of the acquirer and the target have high level of marketization. The results suggest that the private sector in China's transitional economy is potentially more efficient than the state-owned sector, as long as the market environment is favorable.
The association of 24 h urinary Na and potassium excretion with the risk of the metabolic syndrome (MetS) has not been studied in China. The aim of the present study was to examine this association by analysing the data from 1906 study participants living in north China. To this end, 24 h urine samples were collected. Of the 1906 participants, 471 (24·7 %) had the MetS. The mean urinary Na and K excretion was 228·7 and 40·8 mmol/d, respectively. After multivariate adjustment, the odds of the MetS significantly increased across the increasing tertiles of urinary Na excretion (1·00, 1·40 and 1·54, respectively). For the components of the MetS, the odds of central obesity, elevated blood pressure and elevated TAG, but not the odds of low HDL-cholesterol and elevated fasting glucose, significantly increased with the successive tertiles of urinary Na excretion. Furthermore, for every 100 mmol/d increase in urinary Na excretion, the odds of the MetS, central obesity, elevated blood pressure and elevated TAG was significantly increased by 29, 63, 22 and 21 %, respectively. However, urinary K excretion was not significantly associated with the risk of the MetS. These findings suggest that high Na intake might be an important risk factor for the MetS in Chinese adults.
Polyphenols are dietary constituents of plants associated with health-promoting effects. In the human diet, polyphenols are generally consumed in foods along with macronutrients. Because the health benefits of polyphenols are critically determined by their bioavailability, the effect of interactions between plant phenols and food macronutrients is a very important topic. In the present review, we summarise current knowledge, with a special focus on the in vitro and in vivo effects of food macronutrients on the bioavailability and bioactivity of polyphenols. The mechanisms of interactions between polyphenols and food macronutrients are also discussed. The evidence collected in the present review suggests that when plant phenols are consumed along with food macronutrients, the bioavailability and bioactivity of polyphenols can be significantly affected. The protein–polyphenol complexes can significantly change the plasma kinetics profile but do not affect the absorption of polyphenols. Carbohydrates can enhance the absorption and extend the time needed to reach a maximal plasma concentration of polyphenols, and fats can enhance the absorption and change the absorption kinetics of polyphenols. Moreover, as highlighted in the present review, not only a nutrient alone but also certain synergisms between food macronutrients have a significant effect on the bioavailability and biological activity of polyphenols. The review emphasises the need for formulations that optimise the bioavailability and in vivo activities of polyphenols.
We investigated the effect mouse cumulus cells (mCCs) on the in vitro maturation (IVM) and developmental potential of bovine denuded germinal vesicle oocytes (DOs). Cumulus–oocyte complexes (COCs), DOs and DOs cocultured with either mCCs (DOs + mCCs) or bovine cumulus cells (bCCs; DOs + bCCs) were subjected to IVM. The meiosis II (MII) rates of DOs, glutathione (GSH) contents, zona pellucida (ZP) hardening and parthenogenetic blastocyst rates of MII oocytes were determined. The relative expression levels of bone morphogenetic protein 15 (BMP-15) and growth differentiation factor 9 (GDF-9) in MII oocytes were measured using quantitative real-time polymerase chain reaction (PCR). mCCs significantly increased the MII rate of DOs from 53.5 ± 3.58% to 69.67 ± 4.72% (p < 0.05) but had no effect on the GSH content (2.17 ± 0.31 pmol/oocyte with mCCs, 2.14 ± 0.53 pmol/oocyte without mCCs). For the DOs + mCCs group, the BMP-15 and GDF-9 expression levels were significantly higher and the ZP dissolution time was significantly lower (162.49 ± 12.51 s) than that of the DOs group (213.95 ± 18.87 s; p < 0.05). The blastocyst rate of the DOs + mCCs group (32.56 ± 4.94%) was similar to that of the DOs group (31.75 ± 3.65%) but was significantly lower than that of the COCs group (43.52 ± 5.37%; p < 0.05). In conclusion, mCCs increased the MII rate of DOs and expression of certain genes in MII oocytes, and decreased the ZP hardening of MII oocytes, but could not improve their GSH content or developmental potential.
Tetra(4-dihydroxyborylphenyl)germanium as the tetrahedral units and 1,2,4,5-tetrahydroxybenzene as linkers were selected to form a crystalline porous aromatic framework, CPAF-13, with the planar five-membered BO2C2 ring in its structure by a dehydration reaction. The crystallinity of CPAF-13 was confirmed by x-ray diffraction analysis. The Ar sorption measurement on activated CPAF-13 results in a surface area of 417 m2/g, using Brunauer Emmett Teller model. CPAF-13 also shows a considerable adsorption capacity of H2.
We investigated the elastic properties of two tin-copper crystalline phases, the η′-Cu6Sn5 and ε-Cu3Sn, which are often encountered in microelectronic packaging applications. The full elastic stiffness of both phases is determined based on strain-energy relations using first-principles calculations. The computed results show the elastic anisotropy of both phases that cannot be resolved from experiments. Our results, suggesting both phases have the greatest stiffness along the c direction, particularly showed the unique in-plane elastic anisotropy associated with the lattice modulation of the Cu3Sn superstructure. The polycrystalline moduli obtained using the Voigt-Reuss scheme are 125.98 GPa for Cu6Sn5 and 134.16 GPa for Cu3Sn. Our data analysis indicates that the smaller elastic moduli of Cu6Sn5 are attributed to the direct Sn–Sn bond in Cu6Sn5. We reassert the elastic modulus and hardness of both phases using the nanoindentation experiment for our calculation benchmark. Interestingly, the computed polycrystalline elastic modulus of Cu6Sn5 seems to be overestimated, whereas that of Cu3Sn falls nicely in the range of reported data. Based on the observations, the elastic modulus of Cu6Sn5 obtained from nanoindentation tests admit the microstructure effect that is absent for Cu3Sn is concluded. Our analysis of electronic structure shows that the intrinsic hardness and elastic modulus of both phases are dominated by electronic structure and atomic lattice structure, respectively.
This paper is to investigate inherent oscillations problems of Potential Field Methods (PFMs) for nonholonomic robots in dynamic environments. In prior work, we proposed a modification of Newton's method to eliminate oscillations for omnidirectional robots in static environment. In this paper, we develop control laws for nonholonomic robots in dynamic environment using modifications of Newton's method. We have validated this technique in a multirobot search-and-forage task. We found that the use of the modifications of Newton's method, which applies anywhere C2 continuous navigation functions are defined, can greatly reduce oscillations and speed up robot's movement, when compared to the standard gradient approaches.
This paper is to investigate inherent oscillations problems of potential field methods (PFMs) for nonholonomic robots in dynamic environments. In prior work, we proposed a modification of Newton's method to eliminate oscillations for omnidirectional robots in static environment. In this paper, we develop control laws for nonholonomic robots in dynamic environment using modifications of Newton's method. We have validated this technique in a multi-robot search-and-forage task. We found that the use of the modifications of Newton's method, which applies anywhere C2 continuous navigation functions are defined, can greatly reduce oscillations and speed up the robot's movement, when compared to the standard gradient approaches.
The S-layer protein CTC surface display system of Bacillus thuringiensis was used to test the possibility of displaying H5N1 Avian influenza virus (AIV) haemagglutinin HA1 on the cell surface of B. thuringiensis. Two recombinant plasmids, pCTC-HA1P and pCSHA1P, were constructed by replacing the central part below the surface anchor sequence slh of S-layer protein gene ctc with part ha1 gene (ha1p). pCTC-HA1P harboured the fusion gene ctc-ha1p and pCSHA1P the fusion gene csa-ctc-ha1p, csa representing the csaAB operon (very important in anchoring S-layer protein on the bacterial cell surface). Two recombinant B. thuringiensis strains were constructed by electrotransferring recombinant plasmids to B. thuringiensis plasmid-free derivative strain BMB171. Strains obtained were CH (bearing pCSHA1P) and BCCH (bearing pCTC-HA1P as well as the csaAB operon-carrying plasmid pMIL-CSA). The vegetative cells of CH and BCCH were used as antigens in haemagglutination (HA) and haemagglutination inhibition (HI) assays. HA assay showed recombinant HA1 proteins successfully displayed on the cell surface of CH and BCCH. HI assay showed that these recombinant HA1 proteins were specific to standard positive HI (haemagglutination inhibition test) serum of subtype H5 AIV. After immunization of mice with vegetative cells, both CH and BCCH elicited a humoral response to HA1 and exhibited immunogenicity as indicated by enzyme-linked immunosorbent assay (ELISA). ELISA also showed that CH exhibited a higher immunogenicity than BCCH. The strategy developed in this study suggests the possibility of generating a heat-stable and oral veterinary vaccine against AIV with the B. thuringiensis S-layer protein CTC surface display system.
Nanostructured thermoelectric materials have attracted lots of interest in recent years, due to their enhanced performance determined by their thermoelectric dimensionless figure of merit. However, because of equipment limitations, not much work has been done on combining simultaneous transport measurements and structural characterization on individual nanostructured thermoelectric materials. With an integrated TEM-STM system, we studied the structural behavior and electrical properties of bismuth (Bi) nanobelts and nanoparticles. Results showed that clean Bi nanostructures free of oxides can be produced by in-situ high temperature electro-migration and Joule annealing processes occurring within the electron microscope. Preliminary electrical measurements indicate a conductivity of two orders of magnitude lower for Bi nanoparticles than that for bulk Bi. Such in-situ studies are highly advantageous for studying the semimetal-semiconductor transition and how this transition could enhance thermoelectric properties.