We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In recent years, obesity is a growing pandemic in the world and has likely contributed to increasing the incidence of obesity related diseases. Fat mass and obesity associated gene (FTO) is the first gene discovered which has close connection with fat. Recent studies suggested FTO gene has played an important role in the molecular mechanisms of many diseases. Obesity is considered to be a hereditary disease and it can evoke many kinds of diseases, including polycystic ovary syndrome (PCOS), type 2 diabetes mellitus (T2DM), cancer, etc., whose exact possible molecular mechanisms responsible for the effect of FTO on obesity and obesity related diseases remain largely unknown. In this review, we comprehensively discuss the correlation between FTO gene and obesity, cancer, PCOS, T2DM, as well as the molecular mechanism involved in these diseases.
Objectives: Central-line–associated bloodstream infection (CLABSI) has been the leading cause of healthcare-associated infections (HAIs) in the intensive care unit (ICU) setting. Previous studies have shown that a care bundle is effective in reducing CLABSI rates; however, the data on long-term sustainability and cost savings of bundled care are limited. Methods: From January 2011 to December 2020, a prospective surveillance was performed to monitor CLABSI at a university hospital in northern Taiwan. To reduce the CLABSI rate, a hospital-wide bundled care program for CLABSI prevention was implemented in 2013. We evaluated the long-term effect of the care bundle on CLABSI incidence and length of stay in the ICU. Results: During the study period, the overall CLABSI incidence decreased from 8.22 per 1,000 catheter days before the care bundle was implemented to 6.33 per 1,000 catheter days in 2020 (P for trend <.01). The most common pathogens causing CLABSI were gut organisms (1,420 of 2,363, 60.1%), followed by environmental organisms (734 of 2,363, 31.1%) and skin organisms (177 of 2,363, 7.5%). The decreasing trend was statistically significant in the incidence of CLABSI caused by skin organisms (P for trend < .01), but not in the incidence of CLABSI caused by environmental organisms (P for trend = .86) or gut organisms (P for trend = .06). In the multivariable analysis, implementation of this care bundle was independently associated with a decrease in the CLABSI rate (RR, 0.77; 95% CI, 0.66–0.88). Compared with patients without CLABSI, patients with CLABSI had a longer average ICU length of stay (27 vs 17 days). Conclusions: A sustainable reduction in the incidence of CLABSI caused by common commensals could be achieved through a cost-saving bundled care program.
The plant Camellia fascicularis, belonging to family Theaceae, has high ornamental and medicinal value, and rare gene resources for genetic improvement of Camellia crops, but is currently threatened with extinction because of the unique and extremely small wild populations. Molecular markers have clarified the wild plant species’ genetic diversity structure, new gene resources and relationship with crops. This will be beneficial for conservation of these valuable crop-related wild species and crop improvement. In this study, we identified 95,979 microsatellite loci from 155,011 transcriptome unigenes, and developed 14 polymorphic expressed sequence tag-derived simple sequence repeat (EST-SSR) microsatellite markers for C. fascicularis. The number of alleles (Na) per locus was 2–8 with a mean of 4.86. The genetic diversity of 40 individuals from four natural populations of C. fascicularis was analysed using these polymorphic markers. The number of alleles (Na) for EST-SSR ranged from 2 to 5, with the expected heterozygosities (He) and observed heterozygosities (Ho) in all loci ranging from 0.183 to 0.683, and from 0.201 to 0.700, respectively, implying a rich genetic variation present in wild C. fascicularis populations. Moreover, the phylogenetic analysis among four populations, using the 14 EST-SSR markers developed in this study, grouped 40 individuals into three groups, which coincide with their geographic distribution. These results showed that 14 EST-SSR markers are available for the analysis of genetic variation in C. fascicularis populations and genetic improvement of new Camellias cultivars by interspecific hybridization, and are beneficial for conservation of the endangered species.
The aim of this study was to investigate the factors influencing urban–rural differences in depressive symptoms among old people in China and to measure the contribution of relevant influencing factors.
Design:
A cross-sectional research. The 2018 data from The Chinese Longitudinal Health Longevity Survey (CLHLS).
Setting:
Twenty-three provinces in China.
Participants:
From the 8th CLHLS, 11,245 elderly participants were selected who met the requirements of the study.
Measurements:
We established binary logistic regression models to explore the main influencing factors of their depressive symptoms and used Fairlie models to analyze the influencing factors of the differences in depressive symptoms between the urban and rural elderly and their contribution.
Results:
The percentage of depressive symptoms among Chinese older adults was 11.72%, and the results showed that rural older adults (12.41%) had higher rates of depressive symptoms than urban (10.13%). The Fairlie decomposition analysis revealed that 73.96% of the difference in depressive symptoms could be explained, which was primarily associated with differences in annual income (31.51%), education level (28.05%), sleep time ( − 25.67%), self-reported health (24.18%), instrumental activities of daily living dysfunction (20.73%), exercise (17.72%), living status ( − 8.31%), age ( − 3.84%), activities of daily living dysfunction ( − 3.29%), and social activity (2.44%).
Conclusions:
The prevalence of depressive symptoms was higher in rural than in urban older adults, which was primarily associated with differences in socioeconomic status, personal lifestyle, and health status factors between the urban and rural residents. If these factors were addressed, we could make targeted and precise intervention strategies to improve the mental health of high-risk elderly.
We propose a 2.1 μm high-energy dissipative soliton resonant (DSR) fiber laser system based on a mode-locked seed laser and dual-stage amplifiers. In the seed laser, the nonlinear amplifying loop mirror technique is employed to realize mode-locking. The utilization of an in-band pump scheme and long gain fiber enables effectively exciting 2.1 μm pulses. A section of ultra-high numerical aperture fiber (UHNAF) with normal dispersion and high nonlinearity and an output coupler with a large coupling ratio are used to achieve a high-energy DSR system. By optimizing the UHNAF length to 55 m, a 2103.7 nm, 88.1 nJ DSR laser with a 3-dB spectral bandwidth of 0.48 nm and a pulse width of 17.1 ns is obtained under a proper intracavity polarization state and pump power. The output power and conversion efficiency are 0.233 W and 4.57%, respectively, both an order of magnitude higher than those of previously reported holmium-doped DSR seed lasers. Thanks to the high output power and nanosecond pulse width of the seed laser, the average power of the DSR laser is linearly scaled up to 50.4 W via a dual-stage master oscillator power amplifier system. The 3-dB spectral bandwidth broadens slightly to 0.52 nm, and no distortion occurs in the amplified pulse waveform. The corresponding pulse energy reaches 19.1 μJ, which is the highest pulse energy in a holmium-doped mode-locked fiber laser system to the best of our knowledge. Such a 2.1 μm, high-energy DSR laser with relatively wide pulse width has prospective applications in mid-infrared nonlinear frequency conversion.
In social interactions, people frequently encounter gain (i.e., all outcomes are gains from the status-quo) or loss (all outcomes are losses from the status-quo) social dilemmas, where their personal interests conflict with social interests. We ask whether there are any behavioral differences in social interactions when it comes to gains and losses. Using the Prisoner’s Dilemma games, in three studies we observed that participants were less cooperative in the loss domain than in the gain domain. This effect was robust, not moderated by payoff amount (Study 1), cooperation index (Study 1), domain comparison (Studies 1 and 2), and personal loss aversion (Study 3). Social motive and belief explained this effect: compared to the gain domain, participants in the loss domain aroused more pro-self motive and less prosocial motive, and showed stronger beliefs that their partner would defect, which led them to cooperate less. These findings suggest that gain and loss domains affect individual motivation and belief, subsequently affecting strategic choices in social dilemmas.
We conduct a laboratory experiment to investigate whether the rebate and matching subsidy schemes cause crowding-out or crowding-in effects (reductions or increases in amount donated) on individual net donations. We find that when the rebate subsidy scheme is implemented, it does not result in crowding-out or crowding-in effects on individual net donations. However, when the matching subsidy scheme is implemented, it encourages individuals to donate more and generates crowding-in effects on individual net donations.
Soft magnetic robots have attracted tremendous interest owning to their controllability and manoeuvrability, demonstrating great prospects in a number of industrial areas. However, further explorations on the locomotion and corresponding deformation of magnetic robots with complex configurations are still challenging. In the present study, we analyse a series of soft magnetic robots with various geometric shapes under the action of the magnetic field. First, we prepared the matrix material for the robot, that is, the mixture of silicone and magnetic particles. Next, we fabricated a triangular robot whose locomotion speed and warping speed are approximately 1.5 and 9 mm/s, respectively. We then surveyed the generalised types of robots with other shapes, where the movement, grabbing, closure and flipping behaviours were fully demonstrated. The experiments show that the arching speed and grabbing speed of the cross-shaped robot are around 4.8 and 3.5 mm/s, the crawling speed of the pentagram-shaped robot is 3.5 mm/s, the pentahedron-shaped robot can finish its closure motion in 1 s and the arch-shaped robot can flip forward and backward in 0.5 s. The numerical simulation based on the finite element method has been compared with the experimental results, and they are in excellent agreement. The results are beneficial to engineer soft robots under the multi-fields, which can broaden the eyes on inventing intellectual devices and equipment.
This study is design to explore the association between dietary betaine intake and risk of all-cause and cardiovascular death in patients with CAD. In this cohort study, 1292 patients with CAD were followed-up for a median of 9.2 years. Baseline dietary betaine intake was collected using a paper-based semi-quantitative food frequency questionnaire (FFQ) and assessed according to the US Department of Agriculture (USDA) Database and the data of betaine in common foods. Cox proportional hazards regression models were used to analyze the association between dietary betaine intake and risks of all-cause and cardiovascular mortality. During the follow-up periods, 259 deaths recorded in 1292 participants, of which 167 died of cardiovascular diseases. Patients in the highest tertile of dietary betaine intake had a lower risk of all-cause (P=0.007) and cardiovascular death (P<0.001) than those in the lowest tertile after adjusting for age and sex, traditional cardiovascular risk factors and other potential confounders. After further adjusting for plasma methionine metabolites and vitamins, HRs across tertiles of dietary betaine intake were 1.00, 0.84 and 0.72 for all-cause mortality (P for trend=0.124), and 1.00, 0.77 and 0.55 for cardiovascular mortality (P for trend=0.021). Higher dietary betaine intake was associated with a decreased risk of cardiovascular death after fully adjustment for cardiovascular risk factors, other potential confounders and plasma methionine metabolites and vitamins. However, the association between dietary betaine intake and risk of all-cause mortality was not statistically significant after further adjusting for plasma methionine metabolites and vitamins.
Collision avoidance is critical in multirobot systems. Most of the current methods for collision avoidance either require high computation costs (e.g., velocity obstacles and mathematical optimization) or cannot always provide safety guarantees (e.g., learning-based methods). Moreover, they cannot deal with uncertain sensing data and linguistic requirements (e.g., the speed of a robot should not be large when it is near to other robots). Hence, to guarantee real-time collision avoidance and deal with linguistic requirements, a distributed and hybrid motion planning method, named Fuzzy-VO, is proposed for multirobot systems. It contains two basic components: fuzzy rules, which can deal with linguistic requirements and compute motion efficiently, and velocity obstacles (VOs), which can generate collision-free motion effectively. The Fuzzy-VO applies an intruder selection method to mitigate the exponential increase of the number of fuzzy rules. In detail, at any time instant, a robot checks the robots that it may collide with and retrieves the most dangerous robot in each sector based on the predicted collision time; then, the robot generates its velocity in real-time via fuzzy inference and VO-based fine-tuning. At each time instant, a robot only needs to retrieve its neighbors’ current positions and velocities, so the method is fully distributed. Extensive simulations with a different number of robots are carried out to compare the performance of Fuzzy-VO with the conventional fuzzy rule method and the VO-based method from different aspects. The results show that: Compared with the conventional fuzzy rule method, the average success rate of the proposed method can be increased by 306.5%; compared with the VO-based method, the average one-step decision time is reduced by 740.9%.
We report the demonstration of a mid-infrared (MIR) supercontinuum (SC) laser delivering a record-breaking average output power of more than 40 W with a long-wavelength edge up to 3.5 μm. The all-fiberized configuration was composed of a thulium-doped fiber amplifier system emitting a broadband spectrum covering 1.9–2.6 μm with pulse repetition rate of 3 MHz, and a short piece of germania fiber. A 41.9 W MIR SC with a whole spectrum of 1.9–3.5 μm was generated in a piece of 0.2-m-long germania fiber, with a power conversion efficiency of 71.4%. For an even shorter germania fiber (0.1 m), an SC with even higher output power of 44.9 W (corresponding to a conversion efficiency of 76.5%) was obtained, but the energy conversion toward the long-wavelength region was slightly limited. A continuous operation for 1 hour with output power of 32.6 W showed outstanding power stability (root mean square 0.17%) of the obtained SC laser. To the best of the authors’ knowledge, for the first time, this work demonstrates the feasibility of germania fiber on generating a 40-W level MIR SC with high efficiency and excellent power stability, paving the way to real applications requiring high power and high reliability of MIR SC lasers.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
Somatic cell nuclear transfer (NT) is associated with aberrant changes in epigenetic reprogramming that impede the development of embryos, particularly during zygotic genome activation. Here, we characterized epigenetic patterns of H3K4me3, H3K9me3, and H3K27me3 in mouse NT embryos up to the second cell cycle (i.e. four-celled stage) during zygotic genome activation. In vivo fertilized and parthenogenetically activated (PA) embryos served as controls. In fertilized embryos, maternal and paternal pronuclei exhibited asymmetric H3K4me3, H3K9me3, and H3K27me3 modifications, with the paternal pronucleus showing delayed epigenetic modifications. Higher levels of H3K4me3 and H3K9me3 were observed in NT and PA embryos than in fertilized embryos. However, NT embryos exhibited a lower level of H3K27me3 than PA and fertilized embryos from pronuclear stage 3 to the four-celled stage. Our finding that NT embryos exhibited aberrant H3K4me3, H3K9me3, and H3K27me3 modifications in comparison with fertilized embryos during early zygotic genome activation help to unravel the epigenetic mechanisms of methylation changes in early NT reprogramming and provide an insight into the role of histone H3 in the regulation of cell plasticity during natural reproduction and somatic cell NT.
Population suppression is an effective way for controlling insect pests and disease vectors, which cause significant damage to crop and spread contagious diseases to plants, animals and humans. Gene drive systems provide innovative opportunities for the insect pests population suppression by driving genes that impart fitness costs on populations of pests or disease vectors. Different gene-drive systems have been developed in insects and applied for their population suppression. Here, different categories of gene drives such as meiotic drive (MD), under-dominance (UD), homing endonuclease-based gene drive (HEGD) and especially the CRISPR/Cas9-based gene drive (CCGD) were reviewed, including the history, types, process and mechanisms. Furthermore, the advantages and limitations of applying different gene-drive systems to suppress the insect population were also summarized. This review provides a foundation for developing a specific gene-drive system for insect population suppression.
The horse played a crucial role in China through the first millennium BC, used both for military advantage and, through incorporation into elite burials, to express social status. Details of how horses were integrated into mortuary contexts during the Qin Empire, however, are poorly understood. Here, the authors present new zooarchaeological data for 24 horses from an accessory pit in Qin Shihuang's mausoleum, indicating that the horses chosen were tall, adult males. These findings provide insights into the selection criteria for animals to be included in the emperor's tomb and invite consideration of questions concerning horse breeds, husbandry practices, and the military and symbolic importance of horses in early imperial China.
The pain caused by the patriarchal totalitarianism of different modern political regimes is felt by everyone in our time: poverty, unemployment, high exploitation of both nature and humans, systematic oppression, persecution and domination, and pollution that threatens human existence. This article analyzes the different forms of patriarchy in contemporary China and explores a feminist way out. The first part examines how modern patriarchy unfolds itself through the land-enclosure movement that has caused serious pollution in China. I will show that the patriarchal process of development is a double exploitation of both nature and humans. The second part turns to the patriarchy in traditional Chinese philosophies and explores possible dangers in Confucian feminism. In the last part I try to posit as a solution Daoist ecofeminism as a new democracy, wherein the feminist ontology and the freedom of all beings will be explored.
Subthreshold depression (sD) negatively impacts well-being and psychosocial function and is more prevalent compared with major depressive disorder (MDD). However, as adults with sD are less likely to seek face-to-face intervention, internet-based cognitive-behavioral therapy (ICBT) may overcome barriers of accessibility to psychotherapy. Although several trials explored the efficacy of ICBT for sD, the results remain inconsistent. This study evaluated whether ICBT is effective in reducing depressive symptoms among Chinese adults with sD.
Methods
A randomized controlled trial was performed. The participants were randomly assigned to 5 weeks of ICBT, group-based face-to-face cognitive-behavioral therapy (CBT), or a waiting list (WL). Assessments were conducted at baseline, post-intervention and at a 6-month follow-up. The primary outcome measured depressive symptoms using the Center for Epidemiological Studies Depression Scale (CES-D). Outcomes were analyzed using a mixed-effects model to assess the effects of ICBT.
Results
ICBT participants reported greater reductions on all the outcomes compared to the WL group at post-intervention. The ICBT group showed larger improvement on the Patient Health Questionnaire-9 (PHQ-9) at post-intervention (d = 0.12) and at follow-up (d = 0.10), and with CES-D at post-intervention (d = 0.06), compared to the CBT group.
Conclusions
ICBT is effective in reducing depressive symptoms among Chinese adults with sD, and improvements in outcomes were sustained at a 6-month follow-up. Considering the low rates of face-to-face psychotherapy, our findings highlight the considerable potential and implications for the Chinese government to promote the use of ICBT for sD in China.
Accumulating evidence suggests that supplementation of n-3 PUFA was associated with reduction in risk of major cardiovascular events. This meta-analysis was to systematically evaluate whether daily supplementation and accumulated intake of n-3 PUFA are associated with improved left ventricular (LV) remodelling in patients with chronic heart failure (CHF). Articles were obtained from Pubmed, Clinical key and Web of Science from inception to January 1 in 2021, and a total of twelve trials involving 2162 participants were eligible for inclusion. The sources of study heterogeneity were explained by I2 statistic and subgroup analysis. Compared with placebo groups, n-3 PUFA supplementation improved LV ejection fraction (LVEF) (eleven trials, 2112 participants, weighted mean difference (WMD) = 2·52, 95 % CI 1·25, 3·80, I2 = 87·8 %) and decreased LV end systolic volume (five studies, 905 participants, WMD = –3·22, 95 % CI 3·67, −2·77, I2 = 0·0 %) using the continuous variables analysis. Notably, the high accumulated n-3 PUFA dosage groups (≥ 600 g) presented a prominent improvement in LVEF, while the low and middle accumulated dosage (≤ 300 and 300–600 g) showed no effects on LVEF. In addition, n-3 PUFA supplementation decreased the levels of pro-inflammatory mediators including TNF-α, IL-6 (IL-6) and hypersensitive c-reactive protein. Therefore, the present meta-analysis demonstrated that n-3 PUFA consumption was associated with a substantial improvement of LV function and remodelling in patients subjected to CHF. The accumulated dosage of n-3 PUFA intake is vital for its cardiac protective role.
Vaginitis is a prevalent gynecologic disease that threatens millions of women’s health. Although microscopic examination of vaginal discharge is an effective method to identify vaginal infections, manual analysis of microscopic leucorrhea images is extremely time-consuming and labor-intensive. To automate the detection and identification of visible components in microscopic leucorrhea images for early-stage diagnosis of vaginitis, we propose a novel end-to-end deep learning-based cells detection framework using attention-based detection with transformers (DETR) architecture. The transfer learning was applied to speed up the network convergence while maintaining the lowest annotation cost. To address the issue of detection performance degradation caused by class imbalance, the weighted sampler with on-the-fly data augmentation module was integrated into the detection pipeline. Additionally, the multi-head attention mechanism and the bipartite matching loss system of the DETR model perform well in identifying partially overlapping cells in real-time. With our proposed method, the pipeline achieved a mean average precision (mAP) of 86.00% and the average precision (AP) of epithelium, leukocyte, pyocyte, mildew, and erythrocyte was 96.76, 83.50, 74.20, 89.66, and 88.80%, respectively. The average test time for a microscopic leucorrhea image is approximately 72.3 ms. Currently, this cell detection method represents state-of-the-art performance.