We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we report the recent progress on the $1~\text{PW}/0.1~\text{Hz}$ laser beamline of Shanghai Superintense Ultrafast Laser Facility (SULF). The SULF-1 PW laser beamline is based on the double chirped pulse amplification (CPA) scheme, which can generate laser pulses of 50.8 J at 0.1 Hz after the final amplifier; the shot-to-shot energy fluctuation of the amplified pulse is as low as 1.2% (std). After compression, the pulse duration of 29.6 fs is achieved, which can support a maximal peak power of 1 PW. The contrast ratio at $-80~\text{ps}$ before main pulse is measured to be $2.5\times 10^{-11}$. The focused peak intensity is improved by optimizing the angular dispersion in the grating compressor. The maximal focused peak intensity can reach $2.7\times 10^{19}~\text{W}/\text{cm}^{2}$ even with an $f/26.5$ off-axis parabolic mirror. The horizontal and vertical angular pointing fluctuations in 1 h are measured to be 1.89 and $2.45~\unicode[STIX]{x03BC}\text{rad}$, respectively. The moderate repetition rate and the good stability are desirable characteristics for laser–matter interactions. The SULF-1 PW laser beamline is now in the phase of commissioning, and preliminary experiments of particle acceleration and secondary radiation under 300–400 TW/0.1 Hz laser condition have been implemented. The progress on the experiments and the daily stable operation of the laser demonstrate the availability of the SULF-1 PW beamline.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.