We are concerned with the semi-classical states for the Choquard equation
$$-{\epsilon }^2\Delta v + Vv = {\epsilon }^{-\alpha }(I_\alpha *|v|^p)|v|^{p-2}v,\quad v\in H^1({\mathbb R}^N),$$ where N ⩾ 2, Iα is the Riesz potential with order α ∈ (0, N − 1) and 2 ⩽ p < (N + α)/(N − 2). When the potential V is assumed to be bounded and bounded away from zero, we construct a family of localized bound states of higher topological type that concentrate around the local minimum points of the potential V as ε → 0. These solutions are obtained by combining the Byeon–Wang's penalization approach and the classical symmetric mountain pass theorem.