We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In an effort to alleviate the issue of knee joint fatigue and injury during lower limb ambulation, a novel passive assisted exoskeleton robot with human–machine interaction is investigated to assist the movement of the human knee joint. The design of the exoskeleton configuration takes into consideration the physiological structure and gait function of the knee joint, ensuring that it satisfies the requirements for motion, force, and gait function of the knee joint. To explore the interaction between the wearer and the exoskeleton, a human–machine kinematic model after wearing exoskeleton is established, which is instrumental in analyzing the integration motion of the wearer and exoskeleton. In addition, the dynamic and static models of the knee joint after wearing the exoskeleton are established, utilizing the Newton–Euler method and force polygon method, respectively, to evaluate the effectiveness of the exoskeleton. Moreover, the size parameters and spring stiffness of the exoskeleton are optimized, using both human body kinematic model and mechanic model. Furthermore, the effectiveness of the exoskeleton in proving assistance is evaluated through human body simulation, using OpenSim. The results indicate that the exoskeleton significantly reduces the knee joint torque by 48.42%.
A low-energy proton accelerator named pulsed synchronous linear accelerator (PSLA) is proposed and developed at the Institute of Fluid Physics, which is driven by unipolar-pulsed high voltages. Pulsed-accelerating electric fields and low-energy ion beams are precisely synchronized on temporal and spatial positions for continuous acceleration. The operating mode and the features of the PSLA are introduced. At present, the feasibility of a low-energy proton PSLA has been verified in principle. An average accelerating gradient up to 3 MV/m for protons is achieved.
Based on the path encoding pulse compression teleology, a novel method for obtaining high-power microwave (HPM) pulse with ultrahigh repetition frequency is proposed in this paper. The mechanism of the path encoding pulse compression teleology is first introduced. And then, the obtained HPM pulse is analyzed. Theoretical analysis shows that the peak power of MW level and the repetition frequency of MHz level for the generated HPM pulse can be easily reached. To demonstrate the effectiveness of this method for obtaining HPM pulse with ultrahigh repetition frequency characteristic, a HPM-obtaining experiment was carried out based on an S-band microwave source. The HPM pulses with the width of 1 ns, 2 ns, and 3 ns are studied, respectively. The measured results show that the HPM pulse with the power higher than 100 kW and the repetition frequency of 250 kHz at the frequency of 2.856 GHz is easily obtained. The repetition frequency of the generated HPM pulse can be easily changed. Because the pulse with the power higher than 100 kW and the repetition frequency of several hundreds of kHz is obtained for the first time, this type of pulse will have a broad prospect of application in the communication, radar, and electronic countermeasure fields. In addition, the effect experiment of interfering communication and control links was carried out by utilizing the ultrahigh repetition frequency characteristic of the generated HPM pulse. Also, the experiment results show the feasibility of this pulse for interfering the communication and control links.
Aerospace represents the development of national science and technology. It is an important foundation for exploring space and an important guarantee for the construction of aerospace power. There are many large workpieces in the aerospace field. The box insulation layer of large workpieces is an important processing problem. A new thick processing equipment is proposed to process the box insulation layer of large workpieces. The thick processing equipment consists of the XYZ shaft long guide rail and five degrees of freedom (5-DOF) RAPA. The mechanical structure of the 5-DOF RAPA is a redundantly actuated parallel mechanism (RAPM). Meanwhile, this paper proposes a new method to design 5-DOF redundantly actuated parallel mechanisms (RAPMs) with large output rotational angles. Based on configuration evolution and Li group, two articulated moving platforms (AMPs) and four kinds of limbs are designed, and a series of 3T2R (T represents translation, R represents rotation) RAPMs and 2T3R RAPMs are synthesized. To verify the designed RAPMs with large angle, an example of RAPMs, 4UPS-{2UPR}-R is analyzed. To ensure that the RAPM has no mechanism vibration impact in movement, this paper represents the RAPM adopts a newly proposed trajectory planning method. The results show that the 4SPU-(2UPR)R mechanism possesses large angles and verifies the efficiency of the new proposed trajectory planning method in simplified trajectories. This work lays the foundation for processing the box insulation layer of large workpieces with straight lines and arcs paths.
This paper proposes a linear quadratic approximation approach to dynamic nonlinear rationally inattentive control problems with multiple states and multiple controls. An efficient toolbox to implement this approach is provided. Applying this toolbox to five economic examples demonstrates that rational inattention can help explain the comovement puzzle in the macroeconomics literature.
This is a case report of a huge hospital evacuation with 11 350 inpatients in the 2021 Zhengzhou flood in China, using a mixed methods analysis.
Methods:
The qualitative part was a content analysis of semi-structured interviews of 6 key hospital staff involved in evacuation management. The evacuation experience was reviewed according to the 4 stages of disaster management: prevention, preparation, response, and recovery.
Results:
Because of unprecedented torrential rain, the flood exceeded expectations, and there was a lack of local preventive measures. In preparation, according to the alert, the evacuation was planned to reduce the workload on inpatients and to accept the surge of medical needs by the flood. In response, the prioritization of critically ill patients and large-scale collaboration of hospital staff, rescue teams, and accepting branch made it possible to successfully transfer all 11 350 inpatients. In recovery, restoring medical services and a series of activities to improve the hospital’s vulnerability were carried out.
Conclusions:
A hospital evacuation is one of the strategies of the business continuity plan of a hospital. For the evacuation, leadership and collaboration were important. Challenges such as prolonged roadway flooding and the infrastructure issues were needed to be addressed throughout the evacuation process.
The Schrödinger–Poisson system describes standing waves for the nonlinear Schrödinger equation interacting with the electrostatic field. In this paper, we are concerned with the existence of positive ground states to the planar Schrödinger–Poisson system with a nonlinearity having either a subcritical or a critical exponential growth in the sense of Trudinger–Moser. A feature of this paper is that neither the finite steep potential nor the reaction satisfies any symmetry or periodicity hypotheses. The analysis developed in this paper seems to be the first attempt in the study of planar Schrödinger–Poisson systems with lack of symmetry.
The Huangshaping deposit is unique in southern Hunan Province, China, as it hosts economic reserves of both W–Mo and Pb–Zn mineralization, which are usually associated with granite and granodiorite porphyry in this area, respectively. This study reports results of in situ LA-MC-ICP-MS sulphur isotopic composition analyses conducted on sulphides from both W–Mo and Pb–Zn mineralization from the Huangshaping deposit with the aim of constraining ore genesis for this deposit. All samples from the proximal W–Mo mineralization have relatively uniform and high δ34S values (8.7 ‰ to 16.0 ‰), close to the range for carbonate sediments in this deposit (13.8 ‰ to 18.1 ‰). These patterns suggest that the granite porphyry in this deposit was the sulphur source for W–Mo mineralization, and that the assimilation of evaporite from the carbonate sediments led to the high δ34S values of the granite porphyry. Sulphides from the Pb–Zn mineralization have δ34S values (2.2 ‰ to 10.3 ‰) lower than those of the W–Mo mineralization, and generally increase in this paragenetic order, with the lowest δ34S values being similar to those of the basement (3.8 ‰ to 7.7 ‰). These patterns indicate that the original sulphur for the Pb–Zn mineralization was most likely derived from the basement, with input of sulphur from the carbonate sediments increasing during the evolution of ore-forming fluids. On the basis of the measured sulphur isotopic compositions, it is suggested that the ore-forming materials for the W–Mo mineralization were derived from the granite porphyry, whereas ore-forming materials extracted from the basement dominated the Pb–Zn mineralization.
At present, the study on autonomous unmanned ground vehicle navigation in an unstructured environment is still facing great challenges and is of great significance in scenarios where search and rescue robots, planetary exploration robots, and agricultural robots are needed. In this paper, we proposed an autonomous navigation method for unstructured environments based on terrain constraints. Efficient path search and trajectory optimization on octree map are proposed to generate trajectories, which can effectively avoid various obstacles in off-road environments, such as dynamic obstacles and negative obstacles, to reach the specified destination. We have conducted empirical experiments in both simulated and real environments, and the results show that our approach achieved superior performance in dynamic obstacle avoidance tasks and mapless navigation tasks compared to the traditional 2-dimensional or 2.5-dimensional navigation methods.
Experimental studies suggest that abnormal levels of Ca, Mg and phosphorus are implicated in pancreatic carcinogenesis. We investigated the associations between intakes of these minerals and the risk of pancreatic cancer in a case-control study conducted in 1994–1998. Cases of pancreatic cancer (n 150) were recruited from all hospitals in the metropolitan area of the Twin Cities and Mayo Clinic, Minnesota. Controls (n 459) were randomly selected from the general population and frequency matched to cases by age, sex and race. All dietary variables were adjusted for energy intake using the residual method prior to data analysis. Logistic regression was performed to evaluate the associations between intake of three nutrients examined and the risk of pancreatic cancer. Total intake of Ca (936 v. 1026 mg/d) and dietary intake of Mg (315 v. 331 mg/d) and phosphorus (1350 v. 1402 mg/d) were significantly lower in cases than in controls. After adjustment for confounders, there were not significant associations of total and dietary intakes of Ca, Mg and phosphorus with the risk of pancreatic cancer. In addition, no significant interactions exist between intakes of these minerals and total fat on pancreatic cancer risk. In conclusion, the present study does not suggest that intakes of Ca, Mg and phosphorus were significantly associated with the risk of pancreatic cancer.
Managerial networking with political actors has long been recognized as a crucial co-option strategy to navigate the challenging institutional environment in emerging economies. However, we know much less about what drives the variation of political networking investment by private ventures. Drawing on resource dependence theory, we unpack the dyadic business-government relations and identify the key organizational and environmental factors that shape the power dependence relationships between private ventures and the government. By examining power imbalance and mutual dependence in this dyadic relationship and considering both the necessity and the capability of political networking, we develop hypotheses regarding the ways in which size-, connection-, and location-based dependencies affect firms’ political networking intensity. These hypotheses are tested through a unique survey of Chinese private ventures. Our study finds that political networking intensity (1) has an inverted U-shaped relationship with firm size, (2) is negatively associated with the presence of embedded political ties while positively associated with that of achieved political connections, and (3) is smaller when the focal firm is located in business development zones. This research bears rich implications for our understanding of corporate political activity in emerging economies from a resource dependence lens.
Data on average iodine requirements for the Chinese population are limited following implementation of long-term universal salt iodisation. We explored the minimum iodine requirements of young adults in China using a balance experiment and the ‘iodine overflow’ hypothesis proposed by our team. Sixty healthy young adults were enrolled to consume a sequential experimental diet containing low, medium and high levels of iodine (about 20, 40 and 60 μg/d, respectively). Each dose was consumed for 4 d, and daily iodine intake, excretion and retention were assessed. All participants were in negative iodine balance throughout the study. Iodine intake, excretion and retention differed among the three iodine levels (P < 0·01 for all groups). The zero-iodine balance derived from a random effect model indicated a mean iodine intake of 102 μg/d, but poor correlation coefficients between observed and predicted iodine excretion (r 0·538 for μg/d data) and retention (r 0·304 for μg/d data). As iodine intake increased from medium to high, all of the increased iodine was excreted (‘overflow’) through urine and faeces by males, and 89·5 % was excreted by females. Although the high iodine level (63·4 μg/d) might be adequate in males, the corresponding level of 61·6 μg/d in females did not meet optimal requirements. Our findings indicate that a daily iodine intake of approximately half the current recommended nutrient intake (120 μg/d) may satisfy the minimum iodine requirements of young male adults in China, while a similar level is insufficient for females based on the ‘iodine overflow’ hypothesis.
The Ganjiang River, one of eight major tributaries of the Yangtze River, located in the western hinterland of the Cathaysia Block, SE China, has a length of 823 km and a drainage area of 82 809 km2, whose detrital zircons provide a valuable means to trace sediment provenances of the river and explore the crustal growth and evolution of the Cathaysia Block. In the current study, 389 concordia zircon U–Pb age spots and rare earth element (REE) contents, in combination with 201 Lu–Hf isotope analyses, have been determined. Oscillatory zoning, high Th/U ratios and REE distribution patterns indicate that most detrital zircon grains are of magmatic origin. The age can be further divided into seven groups: 130–185 Ma with a peak at 153 Ma (7 %); 217–379 Ma with a peak at 224 Ma (16 %); 390–494 Ma with a peak at 424 Ma (37 %); 500–698 Ma with a peak at 624 Ma (5 %); 716–897 Ma with a peak at 812 Ma (10 %); 902–1191 Ma with a peak at 976 Ma (13 %); and 2232–2614 Ma with a peak at 2471 Ma (5 %). The sources of almost all the zircon age groups can be found from the exposed rocks. In particular, Yanshanian, Hercynian to Indosinian, Pan-African, Grenvillian and Palaeoproterozoic–Archaean zircons can be mainly sourced from the northern Guangdong – southern Jiangxi – western Fujian region, while Caledonian zircons come from southern and central Jiangxi, and Jinningian zircons are from central and northern Jiangxi. Most determined zircon grains exhibit negative εHf(t) values and TDM2 ages of 797 to 4016 Ma with a wide peak at 1500–2100 Ma and a keen peak at 1824 Ma, suggesting that most zircons are sourced from the reworked ancient crustal materials or crust–mantle mixing. The zircon Hf model age cumulative probability diagram shows that rapid crustal growth took place at the Palaeo- to Mesoproterozoic and that about 90 % of the crust of the Cathaysia Block was formed before 1.5 Ga.
Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors were commissioned. JUNA plans to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. At the first period, JUNA aims at the direct measurements of 25Mg(p,γ)26 Al, 19F(p,α) 16 O, 13C(α, n) 16O and 12C(α,γ) 16O near the Gamow window. The current progress of JUNA will be given.
where Ω ⊂ ℝ2 is a bounded domain. In the second place, we present existence results for the following stationary Schrödinger systems defined in the whole plane
0.2
$$\left\{ {\matrix{ {-\Delta u + u = g(v)\;\;\;{\rm in}\;{\open R}^2,} \cr {-\Delta v + v = f(u)\;\;\;{\rm in}\;{\open R}^2.} \cr } } \right.$$
We assume that the nonlinearities f, g have critical growth in the sense of Trudinger–Moser. By using a suitable variational framework based on the generalized Nehari manifold method, we obtain the existence of ground state solutions of both systems (0.1) and (0.2).