We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The majority of plant viral disease is transmitted and spread by insect vectors in the field. The small brown planthopper, Laodelphax striatellus (Fallén), is the only efficient vector for rice black-streaked dwarf virus (RBSDV), a devastating plant virus that infects multiple grain crops, including rice, maize, and wheat. Adenosine triphosphate (ATP)-binding cassette (ABC) transporters participate in various biological processes. However, little is known about whether ABC transporters affect virus infection in insects. In this study, RBSDV accumulation was significantly reduced in L. striatellus after treatment with verapamil, an effective inhibitor of ABC transporters. Thirty-four ABC transporter genes were identified in L. striatellus and expression analysis showed that LsABCF2 and LsABCG9 were significantly upregulated and downregulated, respectively, after RBSDV infection. LsABCF2 and LsABCG9 were expressed during all developmental stages, and LsABCG9 was highly expressed in the midgut of L. striatellus. Knockdown of LsABCF2 promoted RBSDV accumulation, while knockdown of LsABCG9 suppressed RBSDV accumulation in L. striatellus. Our data showed that L. striatellus might upregulate the expression of LsABCF2 and downregulate LsABCG9 expression to suppress RBSDV infection. These results will contribute to understanding the effects of ABC transporters on virus transmission and provide theoretical basis for virus management in the field.
The microstructure and texture evolution of Ni-5 at%W (Ni5W) alloy substrates were investigated by in situ tensile testing along the rolling direction (RD), transverse direction (TD), and at 45° to the RD (45°-RD), as well as by electron backscatter diffraction characterization. The tensile stress direction had a significant influence on the texture evolution. The cubic texture in the Ni-5 at%W alloy exhibited severe degradation when the tensile angle was 45°-RD. In contrast, the cubic texture was relatively stable under high deformation along the RD or TD. It was found that the slip line system in the 45°-RD specimen was the key to the contrasting behavior. The effect of the tensile testing angle on the cubic texture evolution for Ni–W substrates was investigated, and the corresponding effect on the superconducting properties of coated materials was studied.
In December 2019, the first confirmed case of pneumonia caused by a novel coronavirus was reported. Coronavirus disease 2019 (COVID-19) is currently spreading around the world. The relationships among the pandemic and its associated travel restrictions, social distancing measures, contact tracing, mask-wearing habits and medical consultation efficiency have not yet been extensively assessed. Based on the epidemic data reported by the Health Commission of Wenzhou, we analysed the developmental characteristics of the epidemic and modified the Susceptible-Exposed-Infectious-Removed (SEIR) model in three discrete ways. (1) According to the implemented preventive measures, the epidemic was divided into three stages: initial, outbreak and controlled. (2) We added many factors, such as health protections, travel restrictions and social distancing, close-contact tracing and the time from symptom onset to hospitalisation (TSOH), to the model. (3) Exposed and infected people were subdivided into isolated and free-moving populations. For the parameter estimation of the model, the average TSOH and daily cured cases, deaths and imported cases can be obtained through individual data from epidemiological investigations. The changes in daily contacts are simulated using the intracity travel intensity (ICTI) from the Baidu Migration Big Data platform. The optimal values of the remaining parameters are calculated by the grid search method. With this model, we calculated the sensitivity of the control measures with regard to the prevention of the spread of the epidemic by simulating the number of infected people in various hypothetical situations. Simultaneously, through a simulation of a second epidemic, the challenges from the rebound of the epidemic were analysed, and prevention and control recommendations were made. The results show that the modified SEIR model can effectively simulate the spread of COVID-19 in Wenzhou. The policy of the lockdown of Wuhan, the launch of the first-level Public Health Emergency Preparedness measures on 23 January 2020 and the implementation of resident travel control measures on 31 January 2020 were crucial to COVID-19 control.
Nickel-coated carbon nanotubes (Ni-CNTs) were achieved by electroless plating. Laser cladded IN718 and IN718 with 10, 30, and 50 wt% additions of Ni-CNTs were fabricated. The structural evolution of CNTs in the laser-deposited layers was studied; the microstructure, tensile, and wear properties of the laser-cladded alloys were characterized. The results show that CNTs in the laser-deposited layers are mostly transformed to carbon nanoproducts (CNPs) in the forms of graphene nanosheets, graphene fragments, carbon nanoribbons, and diamond-like nanoparticles by unzipping, interbonding, collapsing, and curvature of CNTs. The interdendritic Laves phase formation is dramatically depressed due to the addition of Ni-CNTs, but the excess addition of the Ni-CNTs can undesirably increase the formation of NbC. The addition of Ni-CNTs effectively improves the tensile and wear properties. The most superior tensile and wear properties are achieved in the layers with 30 and 50 wt% additions of Ni-CNTs, respectively. The generation of intermetallic phase and CNPs are revealed to be two dominant effects both on the tensile and wear properties of the laser-cladded alloys.
Southern China is affected by multi-stage tectonic activities, with strong fold deformation, complex fault systems and poor shale gas preservation conditions. Here, we used shale samples from the lower Silurian Longmaxi shale in the complex tectonic area of Southern China, to study the relationship between differential structural deformation, and pore structure and adsorption capacity. According to the deformation mechanism of the shale, it is further divided into brittle-slip rheological deformation (BD) and ductile-slip rheological deformation (DD). The results show that all micro-fractures can be observed under scanning electron microscopy in deformed shale samples, but in shale samples with different types of rheological deformation, the micro-fractures have large differences in scale, fracture length and lateral connectivity. The micro-fractures developed in DD shales are small in scale and short in fracture length, but have strong local connectivity. In contrast, brittle minerals are more developed in BD shales, and interlayer shearing has formed micro-fractures with large fracture length and good lateral connectivity, which is beneficial for later fracturing. In these two types of deformed shales, pores in organic matter are rare, and sporadic organic pores have small pore size and poor connectivity. The total pore volume (1.8–2.4 × 10−2 cm3 g–1) of BD shale samples is higher than that of DD shale samples (0.8–1.6 × 10−2 cm3 g–1). There is a positive correlation between total pore volume and quartz content. In addition, the specific surface area (12–18 m2 g–1) of DD shale samples is larger than that of BD shale samples (6–12 m2 g–1).
The link between schizophrenia and cigarette smoking has been well established through observational studies. However, the cause–effect relationship remains unclear.
Aims
We conducted Mendelian randomisation analyses to assess any causal relationship between genetic variants related to four smoking-related traits and the risk of schizophrenia.
Method
We performed a two-sample Mendelian randomisation using summary statistics from genome-wide association studies (GWAS) of smoking-related traits and schizophrenia (7711 cases, 18 327 controls) in East Asian populations. Single nucleotide polymorphisms (SNPs) correlated with smoking behaviours (smoking initiation, smoking cessation, age at smoking initiation and quantity of smoking) were investigated in relation to schizophrenia using the inverse-variance weighted (IVW) method. Further sensitivity analyses, including Mendelian randomisation-Egger (MR-Egger), weighted median estimates and leave-one-out analysis, were used to test the consistency of the results.
Results
The associated SNPs for the four smoking behaviours were not significantly associated with schizophrenia status. Pleiotropy did not inappropriately affect the results.
Conclusions
Cigarette smoking is a complex behaviour in people with schizophrenia. Understanding factors underlying the observed association remains important; however, our findings do not support a causal role of smoking in influencing risk of schizophrenia.
The various vision-based tactile sensors have been developed for robotic perception in recent years. In this paper, the novel soft robotic finger embedded with the visual sensor is proposed for perception. It consists of a colored soft inner chamber, an outer structure, and an endoscope camera. The bending perception algorithm based on image preprocessing and deep learning is proposed. The boundary of color regions and the position of marker dots are extracted from the inner chamber image and label image, respectively. Then the convolutional neural network with multi-task learning is trained to obtain bending states of the finger. Finally, the experiments are implemented to verify the effectiveness of the proposed method.
The plasma in the scrape-off layer (SOL) has an important effect on the coupling of the waves in the ion cyclotron range of frequencies (ICRF). The high-frequency B-dot (HFB) probes have been installed to investigate the behaviour of ICRF waves on EAST. The fast and slow ICRF wave field amplitudes are measured and a domain parallel wavenumber is deduced. Results of measurements on a test experimental platform and EAST experiments are presented, which include vacuum and plasma situations. In vacuum it is found that field amplitudes increase linearly with ICRF power. Besides, during plasma operation, field amplitudes measured were decreased by an order of magnitude and no linear relation with power was observed. Fast and slow wave power densities fluctuate strongly with plasma density. The experimental results in the laboratory coincide with the simulation results and allow for validating of the measurement method.
Receiver Autonomous Integrity Monitoring (RAIM) provides an integrity service for Global Navigation Satellite Systems (GNSS). The conventional RAIM algorithm is based on the assumption of a single fault and typically uses the forward-backward method, which is based on the w-test or correlation analysis methods, to exclude the faults. It is suitable for single fault detection and exclusion, while it can lead to inefficiency, can be misleading and can even fail in the exclusion of multiple faults. To solve this problem, an improved method based on consensus voting of the w-test and correlation analysis methods is presented. To verify the performance of the improved method, tests using Global Positioning System (GPS)/BeiDou System (BDS) data have been carried out in comparison with the conventional methods in terms of false and correct faults exclusion rate and computational complexity in the case of a different number of faults. Results show that the improved method has almost the same correct exclusion rate compared to the conventional RAIM in the case of a single fault. It is worth noting that the improved method has a higher correct exclusion probability and computational efficiency as well as a lower possibility of false exclusion in the case of multiple faults.
Ring artifacts are undesirable and complicate the analysis and interpretation of microstructures in synchrotron X-ray microtomography. Here, we propose a new method to improve the image quality of an object by removing the ring artifacts and investigate the efficiency of this process with tomographic images of a dried Tenebrio molitor. In this method, before the tomographic reconstruction, ring artifacts were identified and located in the sinograms as line artifacts. Then, the identified line artifacts were corrected as single point noise via image processing of the original projections. Eventually, the corresponding line artifacts were removed, resulting in reduced ring artifacts in the reconstructed tomographic images. Simulations verified the efficiency of the proposed method. This method was successfully applied for the structural analysis of the insect T. molitor, showing superior performance in reducing ring artifacts in the tomographic image without noticeable loss of structural information.
Psychiatric disorders such as schizophrenia and major depressive disorder
(MDD) are likely to be caused by multiple susceptibility genes, each with
small effects in increasing the risk of illness. Identifying DNA variants
associated with schizophrenia and MDD is a crucial step in understanding
the pathophysiology of these disorders.
Aims
To investigate whether the SP4 gene plays a significant
role in schizophrenia or MDD in the Han Chinese population.
Method
We focused on nine single nucleotide polymorphisms (SNPs) harbouring the
SP4 gene and carried out case–control studies in 1235
patients with schizophrenia, 1045 patients with MDD and 1235 healthy
controls recruited from the Han Chinese population.
Results
We found that rs40245 was significantly associated with schizophrenia in
both allele and genotype distributions (Pallele = 0.0005, Pallele = 0.004 after Bonferroni correction; Pgenotype = 0.0023, Pgenotype = 0.0184 after Bonferroni correction). The rs6461563
SNP was significantly associated with schizophrenia in the allele
distributions (Pallele = 0.0033, Pallele = 0.0264 after Bonferroni correction).
Conclusions
Our results suggest that common risk factors in the SP4
gene are associated with schizophrenia, although not with MDD, in the Han
Chinese population.
Fractures are important for shale-gas reservoirs with low matrix porosity because they increase the effective reservoir space and migration pathways for shale gas, thus favouring an increased volume of free gas and the adsorption of gases in shale reservoirs, and they increase the specific surface area of gas-bearing shales which improves the adsorption capacity. We discuss the characteristics and dominant factors of fracture development in a continental organic matter-rich shale reservoir bed in the Yanchang Formation based on observations and descriptions of fracture systems in outcrops, drilling cores, cast-thin sections and polished sections of black shale from the Upper Triassic Yanchang Formation in the SE Ordos Basin; detailed characteristics and parameters of fractures; analyses and tests of corresponding fracture segment samples; and the identification of fracture segments with normal logging. The results indicate that the mineral composition of the continental organic-matter-rich shale in the Yanchang Formation is clearly characterized by a low brittle mineral content and high clay mineral content relative to marine shale in the United States and China and Mesozoic continental shale in other basins. The total content of brittle minerals, such as quartz and feldspar, is c. 41%, with quartz and feldspar accounting for 22% and 19% respectively, and mainly occurring as plagioclase with small amounts of carbonate rocks. The total content of clay minerals is high at up to 52%, and mainly occurs as a mixed layer of illite-smectite (I/S) which accounts for more than 58% of the total clay mineral content. The Upper Triassic Yanchang Formation developed two groups of fracture (joint) systems: a NW–SE-trending system and near-E–W-trending system. Multiple types of fractures are observed, and they are mainly horizontal bedding seams and low-dip-angle structural fractures. Micro-fractures are primarily observed in or along organic matter bands. Shale fractures were mainly formed during Late Jurassic – late Early Cretaceous time under superimposed stress caused by regional WNW–ESE-trending horizontal compressive stress and deep burial effects. The extent of fracture development was mainly influenced by multiple factors (tectonic factors and non-tectonic factors) such as the lithology, rock mechanical properties, organic matter abundance and brittle mineral composition and content. Specifically, higher sand content has been observed to correspond to more rapid lithological changes and more extensive fracture development. In addition, higher organic matter content has been observed to correspond to greater fracture development, and higher quartz, feldspar and mixed-layer I/S contents have been observed to correspond to more extensive micro-fracture development. These results are consistent with the measured mechanical properties of the shale and silty shale, the observations of fractures in cores and thin-sections from more than 20 shale-gas drilling wells, and the registered anomalies from gas logging.
To evaluate vitamin D deficiency prevalence and risk factors among pregnant Chinese women.
Design
A descriptive cross-sectional analysis.
Setting
China National Nutrition and Health Survey (CNNHS) 2010–2013.
Subjects
A total of 1985 healthy pregnant women participated. Possible predictors of vitamin D deficiency were evaluated via multiple logistic regression analyses.
Results
The median serum 25-hydroxyvitamin D level was 15·5 (interquartile range 11·9–20·0, range 3·0–51·5) ng/ml, with 74·9 (95 % CI 73·0, 76·7) % of participants being vitamin D deficient (25-hydroxyvitamin D <20 ng/ml). According to the multivariate logistic regression analyses, vitamin D deficiency was positively correlated with Hui ethnicity (P=0·016), lack of vitamin D supplement use (P=0·021) and low ambient UVB level (P<0·001). In the autumn months, vitamin D deficiency was related to Hui ethnicity (P=0·012) and low ambient UVB level (P<0·001). In the winter months, vitamin D deficiency was correlated with younger age (P=0·050), later gestational age (P=0·035), higher pre-pregnancy BMI (P=0·019), low ambient UVB level (P<0·001) and lack of vitamin D supplement use (P=0·007).
Conclusions
Vitamin D deficiency is prevalent among pregnant Chinese women. Residing in areas with low ambient UVB levels increases the risk of vitamin D deficiency, especially for women experiencing advanced stages of gestation, for younger pregnant women and for women of Hui ethnicity; therefore, vitamin D supplementation and sensible sun exposure should be encouraged, especially in the winter months. Further studies must determine optimal vitamin D intake and sun exposure levels for maintaining sufficient vitamin D levels in pregnant Chinese women.
The prevalence and factors associated with delays in help seeking for people with dementia in China are unknown.
Methods:
Within 1,010 consecutively registered participants in the Clinical Pathway for Alzheimer's Disease in China (CPAD) study (NCT01779310), 576 persons with dementia (PWDs) and their informants reported the estimated time from symptom onset to first medical visit seeking diagnosis. Univariate analysis of general linear model was used to examine the potential factors associated with the delayed diagnosis seeking.
Results:
The median duration from the first noticeable symptom to the first visit seeking diagnosis or treatment was 1.77 years. Individuals with a positive family history of dementia had longer duration (p = 0.05). Compared with other types of dementia, people with vascular dementia (VaD) were referred for diagnosis earliest, and the sequence for such delays was: VaD < Alzheimer's disease (AD) < frontotemporal dementia (FTD) (p < 0.001). Subtypes of dementia (p < 0.001), family history (p = 0.01), and education level (p = 0.03) were associated with the increased delay in help seeking.
Conclusions:
In China, seeking diagnosis for PWDs is delayed for approximately 2 years, even in well-established memory clinics. Clinical features, family history, and less education may impede help seeking in dementia care.
Charged particle diagnostics is one of the required techniques for implosion areal density diagnostics at the SG-III facility. Several proton spectrometers are under development, and some preliminary areal density diagnostics have been carried out. The response of the key detector, CR39, to charged particles was investigated in detail. A new track profile simulation code based on a semi-empirical model was developed. The energy response of the CR39 detector was calibrated with the accelerator protons and alphas from a 241Am source. A proton spectrometer based on the filtered CR39 detector was developed, and D–D primary proton measurements were implemented. A step range filter spectrometer was developed, and preliminary areal density diagnostics was carried out. A wedged range filter spectrometer array made of Si with a higher resolution was designed and developed at the SG-III facility. A particle response simulation code by the Monte Carlo method and a spectra unfolding code were developed. The capability was evaluated in detail by simulations.
In this paper, high-k hafnium–aluminum oxide (HAO) films were synthesized by the sol–gel technique. The effects of the ratio of Hf and Al on the properties of the HAO films were investigated thoroughly. The average optical transmittance of the HAO films was above 88% within the visible light range and Al incorporation in HfO2 can enlarge the band gap of HAO films. X-ray diffraction (XRD) results showed that Al additive can suppress the crystallization of HfO2 and the HAO films were amorphous in structure. The refractive index of HAO films can be modulated with the ratio of Hf and Al in the HAO films. The HAO films with the ratio of Hf and Al = 2:1 obtained excellent performance including the root mean square (RMS) roughness of 0.26 nm, the relative permittivity of 12.1, the leakage current density of 1.69 × 10−7 A/cm2 at 2 MV/cm, and the etching rate in dilute HF solution less than 1 nm/s.
It is widely accepted that oxygen will severely deteriorate the glass-forming ability (GFA) of an alloy. In this work, we report that the GFA of a Fe76Si9B10P5 glassy alloy can be significantly improved (the critical diameter for fully glass formation is increased from 1 to 3 mm) under oxygen casting atmosphere. Furthermore, the pressure of oxygen atmosphere gives an obvious enhancement in the critical diameter of Fe76Si9B10P5 glassy alloy. A dependence of GFA on casting atmosphere species (argon, nitrogen, air, and oxygen) is also observed for this glassy alloy, and its critical diameter is 1, 1.5, 2.5, and 3 mm, respectively. In addition, the Fe-based glassy alloy exhibits excellent soft magnetic properties regardless of the applied casting atmosphere. The mechanism for such an unusual oxygen effect on the GFA of Fe76Si9B10P5 glassy alloy is attributed to the reduced nucleation rate caused by the enhancement of surface tension of the alloy melt.