We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Prognostic heterogeneity in early psychosis patients yields significant difficulties in determining the degree and duration of early intervention; this heterogeneity highlights the need for prognostic biomarkers. Although mismatch negativity (MMN) has been widely studied across early phases of psychotic disorders, its potential as a common prognostic biomarker in early periods, such as clinical high risk (CHR) for psychosis and first-episode psychosis (FEP), has not been fully studied.
Methods
A total of 104 FEP patients, 102 CHR individuals, and 107 healthy controls (HCs) participated in baseline MMN recording. Clinical outcomes were assessed; 17 FEP patients were treatment resistant, 73 FEP patients were nonresistant, 56 CHR individuals were nonremitters (15 transitioned to a psychotic disorder), and 22 CHR subjects were remitters. Baseline MMN amplitudes were compared across clinical outcome groups and tested for utility prognostic biomarkers using binary logistic regression.
Results
MMN amplitudes were greatest in HCs, intermediate in CHR subjects, and smallest in FEP patients. In the clinical outcome groups, MMN amplitudes were reduced from the baseline in both FEP and CHR patients with poor prognostic trajectories. Reduced baseline MMN amplitudes were a significant predictor of later treatment resistance in FEP patients [Exp(β) = 2.100, 95% confidence interval (CI) 1.104–3.993, p = 0.024] and nonremission in CHR individuals [Exp(β) = 1.898, 95% CI 1.065–3.374, p = 0.030].
Conclusions
These findings suggest that MMN could be used as a common prognostic biomarker across early psychosis periods, which will aid clinical decisions for early intervention.
Population structures are changing in many developed countries, and Korean society is currently one of the fastest ageing worldwide.1 This circumstance is due to a rapidly decreasing birth rate and an increasing life expectancy in recent decades, and this situation is likely to continue for a prolonged period. A national epidemiological investigation predicted that Korea will move from an ageing society to a ‘superaged’ society in only 25 years, from 2000 to 2025, with 46.5% (18.3 million) of the population expected to be older than 65 years by 2067.1 This demographic change gives rise to substantial challenges in dealing with increased demands on medical services relating to chronic and degenerative diseases, particularly related to the increasing prevalence of dementia in elderly patients (which was 9.2% in 2014).2 The care needs of community-residing people with dementia are complex and depend on the severity of dementia symptoms, such as cognitive impairment, functional dependencies and behavioural and psychological symptoms.3
The explosive outbreak of COVID-19 led to a shortage of medical resources, including isolation rooms in hospitals, healthcare workers (HCWs) and personal protective equipment. Here, we constructed a new model, non-contact community treatment centres to monitor and quarantine asymptomatic and mildly symptomatic COVID-19 patients who recorded their own vital signs using a smartphone application. This new model in Korea is useful to overcome shortages of medical resources and to minimise the risk of infection transmission to HCWs.
It has been reported that the follower in a tandem configuration with no wall (0W) reduces the time-averaged input power by utilizing the vortex interception mode (Zhu et al., Phys. Rev. Lett., vol. 113, 2014, p. 238105). In the present study, a numerical simulation is conducted with two self-propelled flexible fins in the tandem configuration near a single wall (1W) and two parallel walls (2W). Contrary to the vortex interception for 0W, the follower employs spontaneously a mixed mode (i.e. a combination of the vortex interception mode and the slalom mode) for 1W and the slalom mode for 2W. Although the lateral motion of the follower for 0W, 1W and 2W is synchronized with the induced lateral flow generated by the leader, the time-averaged input power of the follower for 1W and 2W is reduced significantly due to the enhanced lateral flow by the vortex–vortex interaction near the wall. The jet-like flow opposite to the moving direction continuously hinders the movement of the follower for 0W, whereas the follower for 1W and 2W utilizes the negative horizontal flow when passing between the main vortex and the induced vortex near the wall, leading to a decrease of the thrust force acting on the follower allowing the follower to keep pace with the leader. The global efficiency of the schooling fins is optimized with a small heaving amplitude of the follower and a critical value of phase difference between the leader and follower when the values of the wall proximity and bending rigidity are moderate.
Over the past two decades, early detection and early intervention in psychosis have become essential goals of psychiatry. However, clinical impressions are insufficient for predicting psychosis outcomes in clinical high-risk (CHR) individuals; a more rigorous and objective model is needed. This study aims to develop and internally validate a model for predicting the transition to psychosis within 10 years.
Methods
Two hundred and eight help-seeking individuals who fulfilled the CHR criteria were enrolled from the prospective, naturalistic cohort program for CHR at the Seoul Youth Clinic (SYC). The least absolute shrinkage and selection operator (LASSO)-penalized Cox regression was used to develop a predictive model for a psychotic transition. We performed k-means clustering and survival analysis to stratify the risk of psychosis.
Results
The predictive model, which includes clinical and cognitive variables, identified the following six baseline variables as important predictors: 1-year percentage decrease in the Global Assessment of Functioning score, IQ, California Verbal Learning Test score, Strange Stories test score, and scores in two domains of the Social Functioning Scale. The predictive model showed a cross-validated Harrell's C-index of 0.78 and identified three subclusters with significantly different risk levels.
Conclusions
Overall, our predictive model showed a predictive ability and could facilitate a personalized therapeutic approach to different risks in high-risk individuals.
Background: Recently, healthcare-associated infections (HAIs) in long-term care hospitals (LTCHs) have markedly increased, but no infection control policy has been established in South Korea. We investigated the current HAI surveillance system and executed a point-prevalence pilot study in LTCHs. Methods: HAIs were defined by newly established surveillance manual based on McGeer criteria revised in 2012. Three LTCHs in Seoul and Gyeonggi province were voluntarily recruited, and data were collected from up to 50 patients who were hospitalized on August 1. The medical records from September to November 2018 were retrospectively reviewed by a charge nurse for infection control per each hospitals after 1 day of training specific for LTCH surveillance. All data were reviewed by a senior researcher visiting onsite. Results: The participating hospitals had 272.33 ± 111.01 beds. Only 1 hospital had an onsite microbiological laboratory. In total, 156 patients were enrolled and 5 HAIs were detected, for a prevalence rate of 3.2%. The average patient age was 79.04 ± 9.92 years. The HAIs included 2 urinary tract infections, skin and soft-tissue infection, low respiratory infection, and conjunctivitis. Conclusions: This is the first survey of HAI in LTCHs in South Korea. The 3.2% prevalence rate is lower than those from previous reports from the European Union or the United States. This study supports the development of a national HAI surveillance and infection control system in LTCHs, although implementation may be limited due to the lack of laboratory support and infection control infrastructure in Korea.
We report our experience with an emergency room (ER) shutdown related to an accidental exposure to a patient with coronavirus disease 2019 (COVID-19) who had not been isolated.
Setting:
A 635-bed, tertiary-care hospital in Daegu, South Korea.
Methods:
To prevent nosocomial transmission of the disease, we subsequently isolated patients with suspected symptoms, relevant radiographic findings, or epidemiology. Severe acute respiratory coronavirus 2 (SARS-CoV-2) reverse-transcriptase polymerase chain reaction assays (RT-PCR) were performed for most patients requiring hospitalization. A universal mask policy and comprehensive use of personal protective equipment (PPE) were implemented. We analyzed effects of these interventions.
Results:
From the pre-shutdown period (February 10–25, 2020) to the post-shutdown period (February 28 to March 16, 2020), the mean hourly turnaround time decreased from 23:31 ±6:43 hours to 9:27 ±3:41 hours (P < .001). As a result, the proportion of the patients tested increased from 5.8% (N=1,037) to 64.6% (N=690) (P < .001) and the average number of tests per day increased from 3.8±4.3 to 24.7±5.0 (P < .001). All 23 patients with COVID-19 in the post-shutdown period were isolated in the ER without any problematic accidental exposure or nosocomial transmission. After the shutdown, several metrics increased. The median duration of stay in the ER among hospitalized patients increased from 4:30 hours (interquartile range [IQR], 2:17–9:48) to 14:33 hours (IQR, 6:55–24:50) (P < .001). Rates of intensive care unit admissions increased from 1.4% to 2.9% (P = .023), and mortality increased from 0.9% to 3.0% (P = .001).
Conclusions:
Problematic accidental exposure and nosocomial transmission of COVID-19 can be successfully prevented through active isolation and surveillance policies and comprehensive PPE use despite longer ER stays and the presence of more severely ill patients during a severe COVID-19 outbreak.
To investigate the impacts of depression screening, diagnosis and treatment on major adverse cardiac events (MACEs) in acute coronary syndrome (ACS).
Methods
Prospective cohort study including a nested 24-week randomised clinical trial for treating depression was performed with 5–12 years after the index ACS. A total of 1152 patients recently hospitalised with ACS were recruited from 2006 to 2012, and were divided by depression screening and diagnosis at baseline and 24-week treatment allocation into five groups: 651 screening negative (N), 55 screening positive but no depressive disorder (S), 149 depressive disorder randomised to escitalopram (E), 151 depressive disorder randomised to placebo (P) and 146 depressive disorder receiving medical treatment only (M).
Results
Cumulative MACE incidences over a median 8.4-year follow-up period were 29.6% in N, 43.6% in S, 40.9% in E, 53.6% in P and 59.6% in M. Compared to N, screening positive was associated with higher incidence of MACE [adjusted hazards ratio 2.15 (95% confidence interval 1.63–2.83)]. No differences were found between screening positive with and without a formal depressive disorder diagnosis. Of those screening positive, E was associated with a lower incidence of MACE than P and M. M had the worst outcomes even compared to P, despite significantly milder depressive symptoms at baseline.
Conclusions
Routine depression screening in patients with recent ACS and subsequent appropriate treatment of depression could improve long-term cardiac outcomes.
For decades, fructose intake has been recognised as an environmental risk for metabolic syndromes and diseases. Here we comprehensively examined the effects of fructose intake on mice liver transcriptomes. Fructose-supplemented water (34 %; w/v) was fed to both male and female C57BL/6N mice at their free will for 6 weeks, followed by hepatic transcriptomics analysis. Based on our criteria, differentially expressed genes (DEG) were selected and subjected to further computational analyses to predict key pathways and upstream regulator(s). Subsequently, predicted genes and pathways from the transcriptomics dataset were validated via quantitative RT-PCR analyses. As a result, we identified eighty-nine down-regulated and eighty-eight up-regulated mRNA in fructose-fed mice livers. These DEG were subjected to bioinformatics analysis tools in which DEG were mainly enriched in xenobiotic metabolic processes; further, in the Ingenuity Pathway Analysis software, it was suggested that the aryl hydrocarbon receptor (AhR) is an upstream regulator governing overall changes, while fructose suppresses the AhR signalling pathway. In our quantitative RT-PCR validation, we confirmed that fructose suppressed AhR signalling through modulating expressions of transcription factor (AhR nuclear translocator; Arnt) and upstream regulators (Ncor2, and Rb1). Altogether, we demonstrated that ad libitum fructose intake suppresses the canonical AhR signalling pathway in C57BL/6N mice liver. Based on our current observations, further studies are warranted, especially with regard to the effects of co-exposure to fructose on (1) other types of carcinogens and (2) inflammation-inducing agents (or even diets such as a high-fat diet), to find implications of fructose-induced AhR suppression.
Firefighters are routinely exposed to various traumatic events and often experience a range of trauma-related symptoms. Although these repeated traumatic exposures rarely progress to the development of post-traumatic stress disorder, firefighters are still considered to be a vulnerable population with regard to trauma.
Aims
To investigate how the human brain responds to or compensates for the repeated experience of traumatic stress.
Method
We included 98 healthy firefighters with repeated traumatic experiences but without any diagnosis of mental illness and 98 non-firefighter healthy individuals without any history of trauma. Functional connectivity within the fear circuitry, which consists of the dorsal anterior cingulate cortex, insula, amygdala, hippocampus and ventromedial prefrontal cortex (vmPFC), was examined using resting-state functional magnetic resonance imaging. Trauma-related symptoms were evaluated using the Impact of Event Scale – Revised.
Results
The firefighter group had greater functional connectivity between the insula and several regions of the fear circuitry including the bilateral amygdalae, bilateral hippocampi and vmPFC as compared with healthy individuals. In the firefighter group, stronger insula–amygdala connectivity was associated with greater severity of trauma-related symptoms (β = 0.36, P = 0.005), whereas higher insula–vmPFC connectivity was related to milder symptoms in response to repeated trauma (β = −0.28, P = 0.01).
Conclusions
The current findings suggest an active involvement of insular functional connectivity in response to repeated traumatic stress. Functional connectivity of the insula in relation to the amygdala and vmPFC may be potential pathways that underlie the risk for and resilience to repeated traumatic stress, respectively.
Raman scattered O VI features at 6825 Å and 7082 Å found in symbiotic stars are important spectroscopic tools to probe the mass transfer process. Adopting a Monte Carlo approach, we perform a profile analysis of Raman O VI features of the yellow SySt AG Draconis and make a comparison with the spectrum obtained with CFHT. It is assumed that the accretion flow is convergent on the entering side with enhanced O VI emission and the flux ratio F(1032)/F(1038)∼1, whereas on the opposite side the flow is divergent with low O VI emission and F(1032/F(1038)∼2. Our best fit to the spectrum is obtained from our model with a mass-loss rate of the giant ∼4 × 10−7 M⊙ yr−1. A slight red wing excess in the spectrum suggests the presence of bipolar neutral components receding in the directions perpendicular to the binary orbital plane with a speed ∼70km s−1
We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.
Allicin (AL) regulates the cellular redox, proliferation, viability, and cell cycle of different cells against extracellular-derived stress. This study investigated the effects of allicin treatment on porcine oocyte maturation and developmental competence. Porcine oocytes were cultured in medium supplemented with 0 (control), 0.01, 0.1, 1, 10 or 100 μM AL, respectively, during in vitro maturation (IVM). The rate of polar body emission was higher in the 0.1 AL-treated group (74.5% ± 2.3%) than in the control (68.0% ± 2.6%) (P < 0.1). After parthenogenetic activation, the rates of cleavage and blastocyst formation were significantly higher in the 0.1 AL-treated group than in the control (P < 0.05). The reactive oxygen species level at metaphase II did not significantly differ among all groups. In matured oocytes, the expression of both BAK and CASP3, and BIRC5 was significantly lower and higher, respectively, in the 0.1 AL-treated group than in the control. Similarly, the expression of BMP15 and CCNB1, and the activity of phospho-p44/42 mitogen-activated protein kinase (MAPK), significantly increased. These results indicate that supplementation of oocyte maturation medium with allicin during IVM improves the maturation of oocytes and the subsequent developmental competence of porcine oocytes.
There is growing evidence that, among the various subclasses of carbon-enhanced metal-poor (CEMP) stars, the outer halo of the Milky Way exhibits a higher frequency of CEMP-no stars (those having no over-abundances of heavy neutron-capture elements) compared with the CEMP-s stars (those with over-enhancements of the s-process elements), while the inner halo shows a higher frequency of CEMP-s stars. We map out fractions of CEMP-no and CEMP-s stars in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]), a so-called “carbonicity map”, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. The CEMP-no and CEMP-s objects are classified by different levels of absolute carbon abundances for our sample, A(C). We also present kinematic and orbital characteristics of these subclasses for each population. The contrast appearing in these characteristics provides critical constraints on the assembly history of the two primary stellar components of the Galactic halo.