We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Marshallsussmanite (IMA2013-067) is a new pyroxenoid mineral from the Wessels mine, Kalahari Manganese Field, Northern Cape Province, South Africa. Marshallsussmanite has ideal formula NaCaMnSi3O8(OH) and triclinic P$\bar{1}$ symmetry. Marshallsussmanite forms vitreous pink bladed crystals to 2.1 cm. The mineral shows perfect cleavage on both {100} and {001}. The chemical composition from electron microprobe (average of 20 analyses) and inductively coupled plasma mass spectrometer analysis (average of three analyses) is Li2O 0.43, Na2O 8.06, MgO 0.08, CaO 15.33, MnO 21.79, SiO2 51.71; totalling 97.40 wt.%. The empirical formula, normalized to 3 Si and assuming 1 H apfu is Li0.100Na0.906Ca0.953Mg0.007Mn1.071Si3O8(OH). Unit-cell parameters from single crystal X-ray diffraction are a = 7.7854(4), b = 6.9374(4), c = 6.8516(3) Å, α = 90.683(3)°, β = 94.330(3)°, γ = 102.856(3)°, V = 359.59(3) Å3; Z = 2. The crystal structure refinement converged with Robs = 0.0248 and site occupancy refinement gives crystal chemistry [Na0.948Li0.052][Ca0.793Mn0.207] [Mn0.937Ca0.063]Si3O8(OH). Marshallsussmanite is a single chain silicate with a repeat interval of three tetrahedra (i.e. dreier chain). Marshallsussmanite is a member of the pectolite group of pyroxenoids, which also includes barrydawsonite-(Y), cascandite, pectolite, serandite and tanohataite. Parallel silicate chains form layers, intercalated with well-ordered cation layers. Calcium and Mn both exhibit octahedral coordination, while Na has four bonded interactions in a coordination sphere (radius 3 Å) of seven separate O atoms. Procrystal electron density and bond valence modelling results are compared. The mineral has an unusually strong hydrogen bond with O4⋅⋅⋅O3 separation of 2.458(2) Å. Unlike pectolite and serandite, O4 in marshallsussmanite acts as an H-bond donor and O3 is an H-bond acceptor. Cation ordering in pyroxenoids has a substantial impact on the H position and corresponding H-bonding schemata.
The goal of this study was to evaluate the Adolescent Smoking Cessation Escaping Nicotine and Tobacco (ASCENT) program, a multifaceted smoking cessation intervention for teens, aged 14 to 18. Seven schools were randomised into either an intervention group (n = 61) or a comparison control group (n = 44). Findings suggested that 67% of the teens in the experimental group reported they did not smoke daily in the past 12 months, compared to 42% of the control group (p < .05). In addition, experimental (treated) youth reduced their smoking from an average of 8 cigarettes a day at baseline to 6 cigarettes a day (p < .05). Although not statistically significant, the overall 1-year quit rate for both groups was higher than the average rate for youth cessation programs (12%). The results of this study suggest that, with appropriate interventions, it is feasible to reduce youth smoking.
Email your librarian or administrator to recommend adding this to your organisation's collection.